Data Set for the Machine-Learning Challenge

I’ve posted 20000 PSK/QAM signals to the CSP Blog. These are the signals I refer to in the post I wrote challenging the machine-learners. In this brief post, I provide links to the data and describe how to interpret the text file containing the signal-type labels and signal parameters.

Overview of Data Set

The 20000 signals are stored in five zip files, each containing 4000 individual signal files:

Batch 1

Batch 2

Batch 3

Batch 4

Batch 5

The zip files are each about 1 GB in size.

The modulation-type labels for the signals, such as “BPSK” or “MSK,” are contained in the zipped text file:

Each signal file is stored in a binary format involving interleaved real and imaginary parts, which I call ‘.tim’ files. You can read a .tim file into MATLAB using read_binary.m. Or use the code inside read_binary.m to write your own data-reader; the format is quite simple.

The Label and Parameter File

Let’s look at the format of the truth/label file. The first line of signal_record_first_20000.txt is

1 bpsk  11  -7.4433467080e-04  9.8977795076e-01  10  9  5.4532617590e+00  0.0

which comprises 9 fields. All temporal and spectral parameters (times and frequencies) are normalized with respect to the sampling rate. In other words, the sampling rate can be taken to be unity in this data set. These fields are described in the following list:

  1. Signal index. In the case above this is `1′ and that means the file containing the signal is called signal_1.tim. In general, the nth signal is contained in the file signal_n.tim. The Batch 1 zip file contains signal_1.tim through signal_4000.tim.
  2. Signal type. A string indicating the modulation format of the signal in the file. For this data set, I’ve only got eight modulation types: BPSK, QPSK, 8PSK, \pi/4-DQPSK, 16QAM, 64QAM, 256QAM, and MSK. These are denoted by the strings bpsk, qpsk, 8psk, dqpsk, 16qam, 64qam, 256qam, and msk, respectively.
  3. Base symbol period. In the example above (line one of the truth file), the base symbol period is T_0 = 11.
  4. Carrier offset. In this case, it is -7.4433467080\times 10^{-4}.
  5. Excess bandwidth. The excess bandwidth parameter, or square-root raised-cosine roll-off parameter, applies to all of the signal types except MSK. Here it is 9.8977795076\times 10^{-1}. It can be any real number between 0.1 and 1.0.
  6. Upsample factor. The sixth field is an upsampling parameter U.
  7. Downsample factor. The seventh field is a downsampling parameter D. The actual symbol rate of the signal in the file is computed from the base symbol period, upsample factor, and downsample factor: \displaystyle f_{sym} = (1/T_0)*(D/U). So the BPSK signal in signal_1.tim has rate 0.08181818.
  8. Inband SNR (dB). The ratio of the signal power to the noise power within the signal’s bandwidth, taking into account the signal type and the excess bandwidth parameter.
  9. Noise spectral density (dB). It is always 0 dB. So the various SNRs are generated by varying the signal power.

To ensure that you have correctly downloaded and interpreted my data files, I’m going to provide some PSD plots and a couple of the actual sample values for a couple of the files.


The line from the truth file is:

1 bpsk  11  -7.4433467080e-04  9.8977795076e-01  10  9  5.4532617590e+00  0.0

The first ten samples of the file are:

-5.703014e-02   -6.163056e-01
-1.285231e-01   -6.318392e-01
6.664069e-01    -7.007506e-02
7.731103e-01    -1.164615e+00
3.502680e-01    -1.097872e+00
7.825349e-01    -3.721564e-01
1.094809e+00    -3.123962e-01
4.146149e-01    -5.890701e-01
1.444665e+00    7.358724e-01
-2.217039e-01   -1.305001e+00

An FSM-based PSD estimate for signal_1.tim is:


And the blindly estimated cycle frequencies (using the SSCA) are:


The previous plot corresponds to the numerical values:

Non-conjugate (\alpha, C, S):

8.181762695e-02  7.480e-01  5.406e+00

Conjugate (\alpha, C, S):

8.032470942e-02  7.800e-01  4.978e+00
-1.493096002e-03  8.576e-01  1.098e+01
-8.331298083e-02  7.090e-01  5.039e+00


The line from the truth file is

4000 256qam  9  8.3914849139e-04  7.2367959637e-01  9  8  1.0566301192e+01  0.0

which means the symbol rate is given by (1/9)*(8/9) = 0.09876543209. The carrier offset is 0.000839 and the excess bandwidth is 0.723. Because the signal type is 256QAM, it has a single (non-zero) non-conjugate cycle frequency of 0.098765 and no conjugate cycle frequencies. But the square of the signal has cycle frequencies related to the quadrupled carrier:


Final Thoughts

Is 20000 waveforms a large enough data set? Maybe not. I have generated tens of thousands more, but will not post until there is a good reason to do so. And that, my friends, is up to you!

That’s about it. I think that gives you enough information to ensure that you’ve interpreted the data and the labels correctly. What remains is experimentation, machine-learning or otherwise I suppose. Please get back to me and the readers of the CSP Blog with any interesting results using the Comments section of this post or the Challenge post.

4 thoughts on “Data Set for the Machine-Learning Challenge

    • Well, the data set I’ve posted is unlikely to be augmented with any other signals, such as universal filter multicarrier (assuming that’s what you are asking about). It is by no means a comprehensive data set for modulation recognition. I suppose that’s part of the point: modulation recognition is a hard problem with a wide variety of possible inputs (not even counting propagation-channel effects!), and the input class is growing all the time as new RF communication physical-layer technologies are developed and deployed. We’ll all have trouble keeping up…

Leave a Reply