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On The Theory of Cyclostationary Signals

William A. Brown

Cyclostationary signals are time-series whose statistical (average) behavior varies
periodically with time. Closely related are almost cyclostationory (AC) signals with sta-
tistical behavior characterized by almost periodic functions of time, i.e., trigonometric
series with possibly non-harmonically related frequencies. In many signal processing
problems involving modulated communication signals, the waveforms encountered are
appropriately modeled as AC. This dissertation presents a statistical theory of these sig-
nals, along Iines recently suggested by W. A. Gardner, based on the principles of time'
averaging.

The motivation for studying almost cyclostationary signals is discussed. A basic
second-order statistical theory for complex valued AC signals - which involves idealized
measurements of hidden periodicity in lag product waveforms - is presented. This leads
to a description of AC signals in terms of the cyclic autocorrelation and, cgclic coniugate
correlation functions and their Fourier transforms, the cyclic spectrum and, cyclic coniu-
gate spectrum. The cyclic spectrum is shown to admit an interpretation as a spectral
correlation densitg, i.e., a cross-spectrurn-between two distinct frequency shifted versions
of a waveform. Similarly, the cyclic conjugate spectrum can be interpreted as a cross-

spectrum between a frequency shifted version of a rvaveform and its frequency shifted
complex conjugate. Together, the cyclic spectrum and cyclic conjugate spectrum are
shown to constitute a complete second-order statistical description of an AC waveform.
Cyclic spectral analysis concepts are then applied to the optimal linear-conjugate-linear
almost periodic filtering problem.

Systems designed to estimate the cyclic spectrum and cyclic conjugate spectrum,
i.e., cyclic spectrum analgzers, are found to be usefully characterized as quadratic almost
periodically time-varying systems. The performance of such systems is described in
terms of properties of the system kernel. Guidelines for system design are developed and
several novel architectures are proposed. The AC fraction-of-time density for complex
valued signals is defined and the Gaussian AC signal model is introduced. The appropri-
ateness of the Gaussian AC model is discussed. The variance performance of cyclic spec-
trum analyzers driven by Gaussian AC waveforms is then studied. Finally, the above
theory is applied to the problem of detecting the presence of an AC signal obscured by
noise using a quadratic almost periodic system-
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1

1.O Introduction
Cyclostationary waveforms are persistent random waveforms with statistical param-

eters that vary periodically with time. Many naturally occurring and man-made systems
with underlying periodically time.variant structures give rise to observed functions of
time which are usefully modeled as cyclostationary waveforms. For example, the rota-
tion of the earth and its revolution about the sun produce temperature time series for a

given locale with apparent daily and yearly cycles. Numerous examples of phenomena
producing cyclostationary waveforms are given by W. A. Gardner in [39].

Of primary concern in this dissertation is the cyclostationary nature of many of the
waveforms encountered in the design and analysis of communications systems. Cyclosta-
tionary behavior is often induced in communication signals by subjecting an otherwise
stationary information bearing signal or data steam to various forms of periodic process-

ing to produce a waveform suitable for transmission. Such periodic processing includes
sampling, digital encoding, multiplexing, and most types of pulse and carrier modulation.
Cyclostationarity can also be induced in a waveform by, for example, rotating
transmitter or receiver antenna patterns, reflection of a traveling wave off of a rotating
object, and by the receiver during the demodulation or signal conditioning process.

The underlying statistical periodicity present in these waveforms is a central issue in
certain signal processing problems. Applications of cyclostationary signal theory of
current interest include signal estimation using various types of linear almost periodically
time-variant systems, detection of the presense of a cyclostationary signal obscured by
noise and interference, system identification, carrier and symbol synchronization, modula-
tion format recognition and parameter estimation, modulation format design, time
difference of arrival estimation, and adaptive beamforming and nullsteering.

While the cyclostationary character of many time series has long been recognized,

increasing capabilities of signal processing hardware and software continue to broaden
the application of cyclostationary signal theory to practical problems. This has been

accompanied by recent advances, e.g. [a0], and increased interest in the theory of cyclos-

tationary signals. This dissertation is a study of the theory of cyclostationary signals

with emphasis on the development of results and analytical approaches suited to the
above application areas.

Problems involving random or erratic waveforms can be studied by employing some

form of idealized averaging to reveal underlying nonrandom waveform characteristics and
system performance. It is common practice to accomplish this by modeling the waveform
as a realization of a random process and to eliminate randomness by probabilistic ensem-

ble averaging. In the class of problems studied here, however, it is more appealing to
eliminate erratic behavior by forming an appropriate time average of the quantity of
interest and considering the limit as the observation time becomes infinite. This
approach preserves a tangible link between the idealized averages and the quantities most
convenient to measure in practice - namely time averages - and eliminates the need for
defining an appropriate probabilistic model of a random process. While the problems
considered in this dissertation can be dealt with by careful application of random process

theory, the time averaging philosophy employed yields a similer and more intuitively
appealing theory. Thus, time averaging is a central theme of this dissertation.

In brief, the scope of this dissertation includes a detailed study of the finite and
infinite time averages encountered in problems involving cyclostationary waveforms' a
statistical characterization of cyclostationary waveforms based on fraction-of-time distri-
butions, a study of linear-conjugate-linear and bilinear (and quadratic) systems driven by
cyclostationary waveforms, and spectral analysis and its generalization - cyclic spectral
analysis - of cyclostationary waveforms. Complex-valued and almost cyclostationary
waveforms are treated throughout.
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I-.1 Previous'Work
The novel aspects of this study build on previous work in several areas. These

include the general subjects of cyclostationary signals, time averaging approaches to time
series analysis and spectral analysis, periodically time-variant systems, complex-valued
signal representations, and complex-valued Gaussian waveforms. This section presents a
brief description of the pertinent literature.

Research specifically dealing with the cyclostationary aspects of communication sig-
nals dates from the late 1950's. The term "cyclostationary" was introduced by Bennett
[7] in 1958 to describe random processes possessing periodically timevariant mean and
autocorrelation functions. Bennett, Gudzenko (1959) [+3], Gladyshev (tg6t) [a1], and
Hurd (1969) 1471, studied basic issues relating to cyclostationary random processes includ-
ing Fourier expansion of the autocorrelation function, estimation of the Fourier
coefficients and the stationarizing effect of introducing a random phase. Brelsford and
Jones (1967) [9] [48] studied linear prediction of a cyclostationary process using a periodi-
cally time-variant predictor. A detailed history of work prior to 1972 is given by
Gardner in his doctoral dissertation [27]. Two influential works in this area in the
engineering literature are the 1969 textbook by Franks [2a] and the 1975 paper by
Gardner and Franks [29]. These emphasize cyclostationary modeling of common com-
munication signals, series representations of cyclostationary random processes, and solu-
tions to the minimum mean-square error-linear filtering problem. A sampling of recent
work on estimation, detection, and general properties of cyclostationary random
processes is provided by references [Za], [30], [13], and [8]. The most comprehensive
treatment using the probabilistic framework of random processes is given by Gardner in
[31].

The cyclostationary nature of communication signals is central to the carrier and
symbol synchronization problems addressed in [zS], [0e], [65], and [3a]. Examples of
other specializations and applications in which cyclostationary concepts have proven use.
ful are linear prediction [60], periodically time.variant filtering and system identification
[zt], [02], [22], [39], spread spectrum signal interception [rZ], [38], transmitter and receiver
filter design [20], [59], [20], [42], crosstalk interference and modulation transfer noise [14],
[3], noise in periodically switched circuits [70], and queuing [1], [52].

Research has also proceeded in the Soviet Union, e.g., the work of Kapustinskas
[Sa], and Japan, e.g., the work of Honda [+6]. Time series with periodically time-variant
statistics have also been studied in disciplines other than engineering, see for example
Hasselmann [a+] on climatic variability and Parzen and Pagano [04] on econometrics.

A time average approach giving rise to a spectral correlation interpretation of
cyclostationary waveform characteristics has recently been proposed by Gardner [eZ] and
has been developed in [aa], [35j, [36], and [39]. In cooperation with Gardner some results
from this dissertation are incorporated into these recent publications. In particular,.some
aspects of this treatment of optimal linear almost periodic filtering, kernel representa-
tions of cyclic spectrum analyzers and their variance performance, and Gaussian almost
cyclostationary waveforms, are included in [39], and results concerning the spectral corre-
lation function of digitally modulated signals appear in [36].

Time average approaches to time series analysis and spectral analysis have pro-
ceeded in parallel with main stream approaches based on random process theory. The
distinction between the approaches is exemplified by the landmark papers of Wiener
(1930) [75] and Kolmogorov (1933) [56]. An interesting discussion of the distinction is
given by Masini in [57]. Wiener's theory of generalized harmonic analysis defines the
autocorrelation and spectrum functions in terms of infinite time averages involving a sin-
gle time function, while other approaches invoke probabilistic concepts. Notable research
that focuses on time average methods includes Wiener's treatment of generalized har-
monic analysis in [76], his original work on optimal filtering [77], and, papers by Kampe



de Feriet [50], [51], Hofstetter [+5], Finch [23], and Gardner [32] [39].

The cyclic spectrum analyzers, cyclic correlators, and signal detectors studied are
quadratic (or bilinear) almost periodically time-variant systems. The theory of nonlinear
systems excited by random waveforms, studied extensively in the literature, is thus appli-
cable. A readable introduction to integral representations of nonlinear systems is given
in the original work of Volterra [74]. Pertinent work on nonlinear systems includes the
efforts of Wiener [78], Smets [69], Deutsch [17], [18], Bedrosian and Rice [5], Schetzen [68],
Koh [55], and Bendat and Piersol [6]. Gardner discusses periodically time-variant non-
linear systems driven by stationary random processes in [27]. Previous work is extended
here to include almost periodic nonlinear systems driven by almost cyclostationary
waveforms.

Linear periodically time-variant system representations and/or associated optimal
filtering issues are discussed by Zzdeh [79], Gardner lZ7l, Gardner and Franks [29], Strom
and Signell [70], and recently by Ferrara [22]. Linear almost periodic systems (treated in
[39]) and linear-conjugate'linear almost periodic systems, both treated in this disserta-
tion, have received relatively little previous attention. The term "linear-conjugate-linear"
was introduced by W. M. Brown [11] [12] to describe systems whose output is the sum of
two linear time-invariant filter outputs, one operating on a complex-valued input and the
other operating on its conjugate.

Interest in complex-valued Gaussian waveforms is intimately tied to interest in
complex-valued waveforms in general. The utility of complex-valued signal representa.:
tions stems from the resulting unification of theory and simplification of certain concepts
especially in connection with bandpass signals and systems. The history of the study of
complex-valued waveforms can be traced in the work of Gabor [26], Ville [73], Arens [4],
Dugundji [f9], Kelly, Reed and Root [5+], Bedrosian [S], Kaitath [aO], Van Trees [72],
Urkowitz [71] and many others. The Gaussian almost cyclostationary waveform model
developed in Chapter Three is useful for characterizing cyclic spectrum analyzer perfor-
mance and for studying the detection problem of Appendix H. In particular, various
representations for the density function and characteristic function associated with
complex-valued Gaussian almost cyclostationary waveforms and the evaluation of
fourth-order moments are of interest. Related work emphasizing complex-valued Gaus-
sian random processes includes that of Reed [66], McGee [58], and Miller [61] [62]. The
particular situation studied in this dissertation - namely the waveform being both com-
plex valued and almost cyclostationary - has received no attention in the literature. The
usual assumption E {*(t+rlZ)x(t-rlZly:0, made in the above references, is inappropri-
ate here and thus extension of previous theory is necessary.

1.2 Surnrnary
The main body of the dissertation is composed of four chapters. Chapters Two and

Three present the essentials of a time average based theory of complex-valued almost
cyclostationary waveforms and develop the analytical tools used in the sequel. The
theory is comprehensive in the sense that the form of the theory emphasizes an analogy
between the sine wave extraction operator ( Es {'} ) and composite fraction-of-time den-
sity and the corresponding entities of random process theory, namely the expectation
operator and probability density. Thus, although this is not thoroughly discussed
within, related work using the random process approach can be given time average
theory interpretations and vice versa.

Chapter Four examines the structure of almost periodically time-variant quadratic
and bilinear systems and employs the theory of the second and third chapters to obtain
some important statistical inpuLoutput relationships. The relationship between the
second-order statistics of the input and the output sine wave components is established.
Also, a general formula for the power spectrum of the output of a system driven by
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Gaussian almost cyclostationary inputs is obtained.

Quadratic and bilinear systems designed to measure the spectral correlation func-
tion (i.e., the cross spectrum of two frequency shifted versions of a waveform) are studied
in detail in Chapter Five.

The details of the more lengthly mathematical derivations are given in the appen-
dices. Also included there is a derivation, using time average concepts, of the likelihood
ratio detector for distinguishing between two statistically distinct cyclostationary signals.

A detailed summary of Chapters Two and Three followed by less detailed sum-
maries of Chapters Four and Five and the appendices are given below.

The erratic detail of a function is subdued by the simple expedient of averaging.
For example, a sliding average of the form

,' (t)-+'.|'' ,(r)dr ,t t-T lz
(1.1)

(1.2)

(1.4)

( 1.5)

where c(l) is an erratic waveform with substantial variation rvithin intervals of length
?, is, in some sense, less erratic than the original waveform z(f ). The same can be said
of the weighted average

rt I (r):J pr(t-r)r(r)dr ,

where p1(f) is a smooth pulse-shaped function of unit area and duration T. The
smoothing operation above is also described as low pass filtering, meaning that com-
ponents of x(t ) associated with frequencies less than 1/ T in magnitude are passed while
those associated with higher frequencies are suppressed. In the limit of infinite averaging
time, a persistent waveform is characterized by a single numberl its mean

ro:Ji- +'*I'' ,(r)dr .

?+oo I t_7 1Z

The utility of such statistical characterization of a waveform is expanded
averages of more complicated waveform constructs such as the frequency
duct of a complex-valued waveform

.+T 12

Ei(r):-lim { t r@*rl2)r(u-,rl2)' r-i2nau 4u
t+@ I t_T12

and the indicator function of a real-valued waveform r(t)
t+T lz

4(,)o:rli1r_ i. I' ,^"(v-r(r))dr ,t t-T 12

where u(f ) is the unit step function.

(1-3)

by considering
shifted lug pro-

Time averages of frequency shifted product waveforms, and in particular lag pro-
ducts, are the focus of Section 2.1. The property that distinguishes a waveform as

cyclostationary can be described in terms of averages of the form of (1.4). Simply stated,
a finite.power waveform is said to exhibit cyclostationarity if R"l?) or R|, (r) is nonzero

for at least one nonzero value of cv, where R*,(r) is given by (t.a) with the conjugate
operation on z omitted. A finite-.power waveform is called purely stationary otherwise.
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An investigation o[ the technical conditions on the waveform and the smoothing function
that assure the existence of limits such as those of (1.3) and (f .+) and consideration of
various modes of convergence are beyond the scope of this dissertation. Instead, the class

of waveforms considered is restricted by imposing two fundamental assumptions. First,
it is assumed that the Iimib time average of all frequency shifted products considered
exists in the ordinary sense, i.e.,

A
7n-

r12
r. 1 rlim - { t (u) t-'Zn ou 4u

? --+oo T l-r'12
( 1.6)

(1.7)

(1.S)

(1.e)

(r. ro)

(r.rr)

( 1.13)

exists, where , (t ) ir the product rvaveform of interest,
(which includes as a special case ,(t):t(t) for y(t)=l
i-portanb existence relationships hold. For example, if zp

rl2
P,4 lim + f l,@)lrau

? ---+oo I _-f lZ

i.e. , z(t)_r( r +rl2)y (t -rl2)'
and r-0). Some simple but

exists and the average power

exists then the average of (1.6) does not depend on the integration time origin, i.e.,

.. r 
t+T12

'u: ]y*+ . I^ ,^"("1"-i2r?t 
du

t-T12

Similarly, if P, and P y exist and

Rfr(')a /g
exists then

which j ustifies ( 1.4). Furthermore, since

r (u +r l2) y (u -, I 2)' ,-i Ztr au du

r12

+tr' -r lz

t+T l2
R&(r)-/:: + , I^ , 

,(u +rl2)y (u -r l2)' ,-i\nau 4u
-+oo t t-Tlz

T
p

l, B l'sP, ,

z p is nonzero for at most a countable number of values of the frequency shift variable p'

The second fundamental assumption is most succinctly stated in terms of the fol-
lowing relationship between first- and second-order averages,

r r. 
Tr2

x\+alze B-atr:;y*i ! ,^A;1r1t-i2tfr4, (1.12)
-t l.

A special case of this requirement is

| "o l': lim
? -+co

T 12

+ {,,R,,(r) d r
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which is equivalent to the familiar mean-square convergence property of the mean esti-
mate c'(t) of (t.t),

s12

lim ri- ] / lr, (t)-xslzdt:o . (1.14)
f +coS+oo S _rl,

Equation (1.12) guarantees that there is a one-to-one correspondence between a pair of
sine wave components in the waveforms r(f) and y(t) and the associated impulse in
their cyclic cross spectrum.

An additional but minor assumption serves to simplify the study of cyclic spectrum
analyzer output convergence (Section 5.1) and provides useful approximate formulas for
the variance of the output of a cyclic spectrum analyzer (Section 5.4.3). It is assumed
that there is a nonzero minimum spacing between values of /9 for which zp in (1.6) is
nonzero.

Some interesting relationships between single-sided averages and the double-sided
averages in the preceding discussion are also addressed in Sections 2.1.2 and 2.L.3. If the
fundamental assumptions are satisfied simultaneously for left-, right-, and double-sided
averages then it is shown that the limit, single- and double-sided averages are equal.

The limit time average of a frequency shifted waveform can be viewed as the com-
plex amplitude of the sine wave component of the waveform at the shift frequency. This
interpretation is explored in Sections 2.1.3 and 2.1.4. The (single) sine wave extraction
operator

r12

o,P{21t1}L -li* + I "U-u)e;zn\u 
d,u : "p""ns' , (1.15)

r'+6 t _T f2

and the (complete) sine wave extraction operator

2(t):8,{,(r)} L \of {z{t)) , (1.16)
'J

facilitate mathematical manipulations and play a fundamental role in subsequent theory.
The waveform is modeled as the sum of its sine wave components plus a residual signal
,(t). Under the fundamental assumptions, the power spectrum of z(t) decomposes into
a sum of impulses associated with Z(t) plus a nonimpulsive portion associated with r(r).

Special terminology and notation is established for second-order statistical functions
in Section 2.1.5. Specifically, the almost periodic correlation function

R,u$,14 E,{r(t*rlz)v(t-r1z)'} (1.17)

and almost periodic conjugate correlation function

R,!,(t,r)4 Et{r(t+r1z)y(t-r1z)} (1.18)

are defined and it is shown that the cyclic correlation function n,i\) and cyclic conju-
gate correlation function Rfi, (r) are their Fourier coefficients.

Spectral analysis concepts are applied in Section 2.1.6 to establish that a waveform
exhibits cyclostationarity if and only if it possesses spectral correlation in the sense
described in the following. The cyclic spectrum S;(f), defined as the Fourier transform
of the cyclic correlation function R&(r), is a cross spectrum of two frequency shifted



relation for cyclic

FI

I

spectral analysisversions of the waveforms of interest. The Wiener
takes the form

lim Iim 1

n/ --+0 af +co At A/

t +^t l2

I
t -nt lz

rr+o lrfu) r Y r -o 1r(u)| du (1.1e )

(1.20)

where

and r/ :LlT and af are the time and frequency resolution parameters, respectively.
Since (1.20) is a bandpass filtering operation with unity midband gain and bandwidth
-r/ followed by downconversion to zero frequency, (1.19) can be interpreted as the corre-
Iation per unit bandwidth between r(t) and y(t) at frequencies f+alz and' f-af2,
respectively. Thus, a waveform exhibiting cyclostationarity, for which S,ZU) or .9j, (/)
is nonzero for some alO, necessarily has at least one of the following forms of spectral
correlation. Either correlation exists between (demodulated) frequency -components of
c(f), separated by some nonzero frequenly offset-r-r', or correlation exists between (demo-
dulated) frequency components of z(t) and x(t)', separated by some nonzero frequency.
offset cu.

The cyclic spectrum functions provide a convenient means for characterizing and
distinguishing between certain communication signal modulation schemes. An example is
given in Section 2.L.7 where a frequency shifted M-dimensional pulse.amplitude'
modulation signal model is examined. The cyclic spectrum functions are expressed in
terms of the model parameters for the general case and two special cases of interest -
binary phase shift keyed and quaternary phase shift keyed signals.

Linear almost periodic (LAP) systems driven by cyclostationary waveforms and
some issues peculiar to the study of complex-valued waveforms are the subject of Section
2.2. Trigonometric series expansion of the system impulse response gives rise to input
oscillator and output oscillator representations of the system in terms of frequency
shifters, linear time-invariant (LTI) filters, and a summing device (Figures 2.4 and 2.5).
Cyclic spectra input/output relationships, based on the derivation in Appendix F, are
presented for a general vector-input vector-output LAP system. In the scalar case these
reduce to

t+T l2
*r (r ), 4 + I ,(u)e-i2n fu 4u

r- t-T lz

sfr(/):t?t r( f +alz)s#*"-p( f -+)I/^(f -nlz)'

(/):IIf/ p(f +ulz)s;l\-r' U-+)I/-x( -f *al2),
px

,SO
vg

(r.z r)

(t.zz)

where r and y are the system input and output, respectively, and H r(f) is the filter
transfer function for the branch associated with oscillator frequency p in the input oscil-
lator system representation. More complicated results for linear-conjugate-linear almost
periodic (LCLAP) systems are also presented and the special cases of purely stationary
input and LTI filtering are considered. If the system is LTI, (1.21) and (1.22) collapse to

sfr(f)-H(f +cul2)H(f -,, l2)'s#(f) (r.za)
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(1.24)

Since a bandlimited waveform is unchanged by passage through a filter with unity gain
over an appropriate pass band, equations (1.23) and (1.2a) provide a simple description
of the region of the (/,n) plane over which the cyclic spectra of a bandiimited waveform
can have support. The cyclic spectra of a low pass waveform of double-sided bandwidth
B can be nonzero only within the diamond indicated by

D B(f ,n')4 u"(f +" l2)unff --ct l2) , (1.25)

where

Similarly, if z is bandpass with bandwidth .B centered at /6 then S#(f) and ^9j' (/) can

be nonzero only within the regions of support of DBU-fo,a) and DpUf-r-2fi, respec-

tively.
The analytic signal and complex enielope representations of a real-valued waveform

are reviewed in Section 2.2.2. The cyclic spectrum formulas (1.23) and (1.2a) for LTI
filtering imply the following relationships between the cyclic spectra of a real-valued
waveform ,r{t), the associated analytic signal ,(t), and the complex envelope

_:n-ti
v(t):r(t), ''"'0",

s#(f)-4" (f +a l2)u (f -" l2)s;,, (f) 1

s;, (/) -4" (f *cu f 2), (-l+ " lz)s;,, (f) ,

s fr(f)-AD B U,*) s t,, U + fo)

s fr. (/) -4DnU,o)sil,'r' tf)

where in (1.29) and (1.30) it is assumed that c,(f) is bandpass centered
bandwidth no greater than .B 12fo. Furthermore,

s t,, }-__+ls ;(f)+ s ;( -/) + s :, (/) + s ;? ( /)'l

uB(/)a {l
for lf
for lf

<B 12

>B 12
(1.26)

(t.zz)

(r.za)

(r.zo)

(1.30)

aL fo with

: 
+ls rX U - f o) +sr? (- f - f ,) + s ;.2 

r o 
( f) + s ;7 

-' t o 
( /)' l

(r.e r)

(r.az)

These relationships are clarified by the potential support diagrams of Figures 2.LL, 2.12,
and 2.13. Since the regions of potential support iD (L.27) and (1.28) are disjoint and
since .9fo (/) -"y be nonzero independently in either of these regions, both ^9i(/) and

S-1,(f) are necessary to fully describe the spectral correlation properties of z,(r) and
LZ \' t

therefore t(t). Similarly, a complete description in terms of the complex envelope
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requires both (1.?9) and (1.30). The potential region of support in (1.28) coincides with
the potential region of support for correlation of positive frequency components with
negative frequency components of zr(t) whereas t1.27) corresponds to correlation bebween
two positive frequency components. Because the effect of conjugation of a waveform
ainounts to frequency reversal and conjugation in the frequency domain (i.".,
Flr(t)'):X(-/)'), ihe cyclic conjugate spectrum S:'(f) can be interpreled in rerms of
correlation bebween waveform components of opposite spectral orienbation. This
interpretation is discussed in Section 2.2.3.

Every system with real-valued input and output can be represented by some
equivalent s]'stem rvhose input and output are the analytic or complex envelope represen-
tations of the original input and output waveforms. If the system is LTI then these
alternative sysbem representations are also LTI. However, if the system is linear time-
variant then the equivalent systems are ]inear-conjugate-linear (LCL), meaning that the
output is the sum of a linear operation on the input plus a linear operation on the conju-
gate of the input. In Section 2.2.4 transformations between LAP systems involving real-
valued rvaveforms and corresponding linear-conjugate-linear almost periodic (LCLAP)
systems involving analytic signals and complex envelopes are derived.

The optimal LCLAP filtering problem is studied in Section 2.2.5. An estimate of
the desired signal is produced by an LCLAP system operating on the received complex-
valued waveform. The objective is to sfecify the LCLAP system that minimizes the time
average magnitude squared error. The conjugate-linear path in the LCLAP system is
vital to obtain performance equivalent to that of the optimal LAP system for the
corresponding real-valued waveform problem. This is not widely recognized in the litera-
ture. The design equations2.5ol and?.sto are expressed in terms of cyclic spectrum
functions. When specialized to the case ol ltnear periodically time-variant filtering, the
design equations are equivalent to those obtained using a probabilistic approach [27].
The theory is applied to the problem of separating two spectrally overlapping amplitude
modulation signals. If no noise'is present, the optimal LCLAP system, found analyti-
cally, achieves perfect desired signal extraction. If low level white noise is present,
numerical solution of the design equations indicates the performance of the optimal
LCLAP system greatly exceeds that of the optimal LTI and LCL time'invariant systems.
An important practical issue not addressed is the problem of synchronization of the
LCLAP system to the received signal.

Many signal processing problems - in particular analysis of the variance perfor-
mance of cyclic spectrum analyzers and design of cyclostationary signal detectors -
require a more complete statistical description of the signals involved than that provided
by the cyclic spectra. The composite fraction-of-time density (CFOTD), introduced by
Gardner [39], provides a complete waveform characterization with regard to sine wave
extraction and creates an analogy between random process theory and the time average
based theory. Sections 3.1 and 3.2 study the ramifications of the CFOTD and some key
properties of the Gaussian almost cyclostdtionary (GAC) waveform model for real-valued
waveforms. The theory is extended to complex-valued waveforms in Sections 3.3 and
3.4. The CFOTD associated with a complex-valued vector x(t)=<,(t)+ixt(t) in terms
of a complex argument vector v is usefully defined as the joint CFOTD of its real and
imaginary partsl if can be expressed as

f*(,r(') :**r,{lI.-"@I__r[( t)) u(,i,-ri( t))] (r.ee)

The analogy with fhe probability density is embodied in the fundamental theorem of sine
uaue extraction

(1.34)Ie(t ,i)/-tr1(v) dv-E,t,eU ,*( r ))) ,
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where g(t,*(t))_ is an almost periodically time-variant nonlinear system and
+A [rr uHl'lV2 is the complex extended vector associated with any vector v. If /*111(v)
is interpreted as a probability density function and E,{'} as expectation then !his
becomes the fundamental theorem of expectation of probability theory. It is shown that
an appropriafe definition o[ lhe characterisbic function associated with x(l)is

*1,;(*)aE,;ei*'*(t)r , (1'35)

where w is complex vahied. A complex-valued'rvaveform z(t) is defined to be Gaussian
almost cyclostationary (GAC) if the real part of every linear combination of time
translates of z(t) has a firsb-order Gaussian characberistic function. This is shown to
imply that LCLAP transformations of GAC waveforms produce GAC waveforms. The
CFOTD associated with a complex-valued GAC rvaveform z(t)takes the form

I*1t/.u):(z,i)-M(aet K**(,))-'l'u*p[- 
f,$_.r*(t))oK**(t)-t(+-p*(r))] , (1.36)

(provided that K*r(t) is ol full rank) rvhere x(t) is an M-dimensional vector of time
translates of z(t),:n(t) is the complex extended vector, and K*r(t) and po(t) are the
almost periodic covariance matrix and rnean vector defined in terms of the sine rvdve
extraction operator. Explicit fourth-order moment formulas are given by (fZ6) through
(3.235).

Chapter Four discusses bilinear almost periodic systems of the form

z{t): I I n(t ,u ,u)x(t -")y (t -u)' duda , (1.37)

where m(t,u,u) is almost periodic in the time variable f. Cyclic spectrum analyzers.
cyclic correlators, and various quadratic signal detection and parameter estimation sys-
tems are of this general form. A quadratic almost periodic system is formed by drivin-g
the bilinear system with a single waveform, i.e., by letting y(t):"(t) or 9(t):z(1)-.
Trigonometric series expansion of the system kernel m(t,u,u) leads to a system represen-
tation consisting of a superposition of bilinear time.invariant systems with frequency
shifted outputs,

,(t):DJ I m"(u ,o)r(t -u)y (t -u)' d,udu "-iztat (1.38)

An alternative representation in terms of frequency shifted inputs also exists. Also of
interest are almost periodic systems which involve all four second-order combinations of
the real and imaginary parts of an input r(t), i.e.,

z1t1:[[x1t-u)rn(t,u,o)7(t-u)d.ud.a , (t.ao;

where x(r)A [Re{r(r)} Im{z(t)}]". An equivalent system operating on the complex-
valued input has the form

z1t1:J t*,1t-u)rm(t ,u,v)*.(t-o)'duda , (1.40)

where

(t.+ t )..r( t ,u ,u ):J' t( t ,u,, )J' ,
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JA 1

6 (1.42)

(r.+a)

(r.++)

(r.+s)

(r.ao)

and * is the complex extended vector described earlier. In Section 4.2 an expression for
the sine wave components of the output of the system of (1.a0) is derived;

E, {z (t)} :\;tr 1 /}iP11r *cv, o ) S$+ " (u)' du,\ s; 2" ut,
p.d

where IW ir the transformed rotated kernel matrix,

lW(a,a ):M"(6 +a f 2,b -o lZ) ,

M"(o,6)is the double Fourier transform of the kernel Fourier coeffi.cients rn"(u,u), and
Tr{'} denotes the matrix trace.

In the applications envisioned, the output sine wave components are typically the
desired output of the above system and the erratic component of the output is con-
sidered noise. Thus, the output power spectrum often provides an adequate characteriza-
tion of system performance. The relatid-nship ((a.114) and (4.116)) between the output
power spectrum and the input cyclic spectra for the above system with Gaussian almost
cyclostationary inputs is presented in Section 4.3. This formula constitutes one of the
major results reported in this dissertation. The lengthly derivation is detailed in Appen-
dix D. The general result can be specialized bo a wide variety of bilinear and quadratic
systems of practical interest by substitution of the particular kernel form. Examples of
such systems and some useful representations of their kernel functions are given in
Appendix C.

In Chapter Five cyclic spectral analysis and cyclic spectrum analyzer systems are
revisited in detail. A cyclic spectrum analyzer is defined as a single branch bilinear
almost periodic system of the form

, (t):J I p (f -€, r), (€+, 12)y (€-' l2)' ,-iznao€ ,-'2n fot 
d, ( d r ,

where /9 and o6 ar€ the nominal spectrum frequency and spectral separation frequency
(cycle frequency), respectively, and p(f,r), called the (rotated) kernel envelope, is a two
dimensional pulse with, durations af and 1/a/ in the t and r dimensions, respectively.
Expression (1.45) usually represents a family of systems for which the key parameters /6,
cv61 Af, and a/ are independent variables. The kernel envelope is assumed to possess

appropriate asymptotic properties in the limit at+oo. Study of the many cyclic spec-
trum analysis methods, including the time and frequency smoothing and transformed
tapered cyclic correlation methods, is unified by consideration of the general form (1.45).
Specialization of the results of Section 4.2 provides an expression for the output sine
wave components,

Et i2nute,

where P is the double Fourier transform of p and
appropriate analyzet kernel design can be deduced.
of Section 4.3 is specialized to the cyclic spectrum
simplifications, &pproximations, and special cases of
power are discussed. Some novel cyclic spectrum

from which considerable insight into
The output power spectrum formula
analyzer to yield (5.148). Numerous
the expressions for the output noise

analy zer i-plementations that have

{'(t )} -I I r 0, ,r) S:o*"0 (, * f o) du

lt



12

computational complexity advantages are studied in Section 5.6. A more detailed sum-
mary of Chapter Five is given in Section 5.0.

Bilinear (and quadratic) forms are encountered in connection with BAP systems and
Gaussian densities and characteristic functions. The identities derived in Appendix A
ease transformation between real-valued representations and complex-valued representa-
tions of these forms.

The complex variable form of a Gaussian CFOTD, used to establish certain proper-
ties of GAC waveforms in Chapter Three, is derived in Appendix B. Many of the key
results of Chapters Four and Five are obtained using the fourth-order moment formula
for complex-valued GAC waveforms. Therefore, Appendix B also offers bwo distinct
derivations of the formula, which has the same form as Isserlis's formula for real-valued
random variables.

Appendix C is a catalog of kernel representations of often-encountered single branch
BAP systems.

Appendix D gives a detailed derivation of the general formula for the output spec-
trum of a BAP system driven by GAC waveforms. The formula is the basis for the
analysis of cyclic spectrum analyzer output variance in Chapter Five.

For convenient reference, a list of cyclic correlation and cyclic spectrum symmetry
identities is given in Appendix E.

The cyclic spectrum input-output relationships for LAP systems, used in Section
2.2, are derived in Appendix F. The closely related formula giving the cyclic spectrum
for a frequency-shifted M-PAM signal is also derived.

In Appendix G, the definitions of the cyclic correlation function and the cyclic spec-
trum function are extended in an appropriate way to discrete-time waveforms. The
cyclic spectrum aliasing formula, which characterizes the relationship between the cyclic
spectrum of a continuous-time waveform and the cyclic spectrum of its sampled version,
is also derived.

Appendix H shows that the likelihood ratio test for detecting the presence of an
almost cyclostationary signal can be derived using time-average rather than probabilistic
concepts. For GAC signal and noise and low signal-to-noise energy coherence, the detec-
tor is a QAP system that can be interpreted as the sum of frequency smoothed cyclic
periodograms where the weighting functions are the cyclic spectra of the signal of
interest.
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2.O First- and Second-Order Theory of Cyclostationary Signals

In this chapter, some basic ideas regarding time'averages of random signals are dis-
cussed, purely stationary, purely cyclostationary and almost cyclostationary signals are

defined, and cyclic spectral analysis is introduced. Relationships between linear almost
periodic systems excited by real-valued waveforms and linear-conjugate-linear almost
periodic systems excited by complex-valued waveforms are examined and the optimal
filtering problem is studied.

The study is directed toward the analysis of the types of signals commonly encoun-
tered in communication systems. These signals are typically random and persistent. Due
to the random nature of the signals, signal characteristics and system performance are

analyzed by using some form of averaging to reveal underlying nonrandom (i.e., constant
or repeating) behavior. The standard approach is to model a signal as a realization of a
rundom pro""r. and to eliminate trt do-.r".s by ensemble averaging, i.e., taking the
expected value. The approach taken here, however, is based on statistical quantities
defined as limit time averages of functions of the infinite duration waveform of interest.
The resulting theory will be seen to be analogous to the theory of cyclo-ergodic random
processes [8].

The principle advantage of the time-average approach is

limiting values of quantities actually measured in practice.
measurement of a complex-valued signal ,(t),

rl2
p"LJi* + I l"(r) lrat ,?+co L _bl,

that ib deals directly wibh
The ideal average power

is an example of such an average. Most signals considered

fi,nite power \n the sense that the limit in (2.L) exists, and

(2.1)

here are assumed to have

0<P" (m (2-2)

A finite-power waveform is inherently of infinite time duration and furthermore, unlike
(continuous) finite energy functions, iis magnitude does_not approach zero for- large lt l.
A simple example is the complex exponential, r(t):s'21Ipt, -@<f (m, for which Pr:1.
The complex exponential waveform plays a fundamental role in the development, and
throughout the dissertation it is referred to as a compler sine waue or simply as a sine

uraue when dropping the qualifier complen does not introduce ambiguity.

In a physical experiment, all systems and observed signals have a finite lifetime.
Thus the concept of a finite'power waveform is a significant idealization of signals actu-
ally occurring in practice. Application of the theory to practical problems involves the
assumption that an appropriate mathematical signal model exists. That is, the physical
experiment is envisioned as continuing indefinitely backwards and forwards in time, pro-
ducing a hypothetical finite porver waveform, which is identical to the observed
waveform over the observation interval. This concept is particularly well suited for
modeling communications systems for which it is natural to visualize an ongoing infor-
mation source, modulation scheme, and noise and interference background.

If a priori knowledge of the phenomenon producing the waveform is available, it
usually takes the form of knowledge about the mathematical form or modulation struc-
ture of the waveform. For example, it may be known that the waveform is a pulse

amplitude modulation signal in noise, i.e.,

"(t)-t ao p U --nT) rizn fot +n $) , (2.3 )
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where oo is a sequence of information symbols and p(l) is a pulse. In addition, statisti-
cal characterizations of the waveform may be known or suspected. For example, it may
be known that ao takes on only the two real values A and -r4 and furthermore that if
the information sequence is observed for a sufficiently long time it appears purely station-
ary and white in the sense that

for rl-0 and k:0 ,

otherwise
,. 1
Irm

N+oo 2,4/+1
--i2nCnAn+kAn€ [.q'

\o

NI
n:-N

Typical signal processing problems of interest here include detecting the presence of such
a signal, improving its signal-to-noise ratio by filtering, and estimating its key parame-
ters T, /6, and pulse shape p(f ). In the absence of specific a priori knowledge concerning
the signal model it may still be possible to accomplish these tasks by virtue of the fact
that many communication signals are cyclostationary in the sense described in Section
2.1.2 while the noise is usually purely stationary. The theory presented in the following
sections provides the basis for design and analysis of certain optimum and ad hoc
methods for accomplishing such signal processing tasks.

2.1 Tirne Averages of Product Wa,ve6rrns
The cross correlation function, which quantifies the degree of linear dependence

between two waveforms as a function of time delay, is a basic tool of {ime-series analysis.
The cross correlation function R*(r) for a fixed time lag r can be visualized as the mean

(i.e., the limit time average) of thi irg prodrr"t waveform r(t+rlZ)y(t-rl2)', that is,

,(t +r lT)y ( t -r l2)' :R,y(r)+r t(r ) ,

where

(2-4)

(2.5)

( 2.6)

(2.8)

(2.e )

R"o(')a /'* ,(t+rl2)y(t-rl2)'dt ,

r 121r*Jt -T lz

r l21r
I

r -r lz

and

'r(t)a r(t+rl2)y(t-rl2)'-R,u!) Q.7)

is the fluctuating component of the product waveform. In the case of cyclostationary
waveforms, it has been observed that the lag product waveform can contain sine wave
components in addition to the constant component Rru(r), that is,

,(t +r lz)y (t -, l2)' :7, * ir* (r) ,i2na2' + , (t) ,

k:1

where

R&(')a /,* , (t +r l2)y ( r - ,12)' e-iZnat dt

The average of a frequency shifted product of the form of R&(r), referred to as the cyclic

correlation function, enters into the solution of many signal processing problems. Aver-
ages of higher order frequency-shifted product waveforms are also of interest, e.g., the
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(2. ro)

(z.r r)

Iim
? +co

r l21r
,r-, Jr- -T lz

* (t+t r) ,U +t z)v U +rr). z(t +t +)' e-izrat dt

is of interest in connection with the sbudy of quadratic systems operating on cyclosta-
tionary inputs. This motivates a detailed study of averages of frequency-shifted product
waveforms of the form of (2.9) and (2.10). This is the subject of Section 2.1 culminating
in a discussion of the Wiener relation of specbral analysis and its extension to cyclic spec-

tral analysis of cyclostationary waveforms.

The need for a theory explicitly involving complex-valued waveforms is discussed in
Section 2.1.1 and a convenient representation of complex-valued waveforms that facili-
tates transformation between real- and complex-valued quantities is presented.

In Section 2.1.2 noLation is introduced for dealing with left-, right-, and double-
sided limit time averages of frequency-shifted products and relationships between these
averages are examined. The class of waveforms considered is implicitly restricted to be

waveforms that satisfy three fundamental assumptions. The first of these is simply that
the limit time average of the frequency-shifted product exists. From this assumption it is
deduced that the average does not depend on the time origin, e.g., with R&(r) defined by
(2.9), it is established that

provided only that R"?,(r) exists and r(t) and y(t) have finite power. It is established
that if z(t):r11+rlz)y(t-rl2)'has finite power then.Rf(r) is nonzero for at most a

countable number of values of the frequency shift parameter cu. The second fundamental
assumption requires that the values of c for which R,iU) is nonzero are not arbitrarily
closely spaced but have a nonzero minimum spacing. This assumption simplifies the
derivation of certain results in cyclic spectral analysis and is satisfied by all communica-
tion signal models known to the author. Section 2.1.2 closes with explicit definitions of
strict- and, wdde-sense purely stationary (PS), purely cyclostationary (PC), and. almost
cy clo stationary (AC) waveforms

In Section 2.1.3 notation is introduced for dealing with finite'time averages of
frequency-shilted product waveforms. The sliding Fourier transform or cornpler arnpli-
tud.e and lhe local spectral companent of a waveform are defined and interpreted in terms
of bandpass filtering. The third fundamental assumption, which is a generalization of
the requirement that the sliding Fourier transform converges to its mean in the temporal
mean-square sense, is stated and discussed. The satisfaction of this assumption is shown
to imply that the left-, right-, and double-sided timit time averages of frequency-shifted
lag products are equal. The assumption is shown to be equivalent to assuming that the
product of the sine wave component amplitudes of two waveforms is equal to the
corresponding sine wave amplitude of the cyclic correlation function, that is,

o+T 12

Rfr(r)-/'* + I^, r(t +rlz)vU-rl2). ,-i,nat dt
+oo I o_T lz

, r12

r 0+o12v ;-,tz :/x + {,,* &(r) e-;2na' d' r,
t lu

(2.12)

A r.I B: ltm' T --+oo

r 121r*Jr- -r l2

where

, (t) e-i 2n Bt dt (2. re)
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As an example, the signum function is shown to violate this assumption.

A sine wave component of a waveform (or frequency-shifted product
be viewed as the result of a linear time.invariant operation performed on
Section 2.1.4 introduces the (single) sine waue ertraction operator, denoted

o,P {r(t)}A , prt'no' ,

and the (complete) sine waue ertraction operator, denoted by

4 {z(r1;A \r,,";znot ,
p

where cB is given by (2.13). Almost periodic (AP) functions of the form of
cussed. Various properties of the sine wave extraction operators are
include the property of linear time-invariance, the conjugation property

E, {, (t)'}:E t {r( r )} ,

the factori.g relationship -
E, {8, {'(t )} ,(t)}:8,

waveform) can
the waveform.
by

(z.rs)

(z.ts) are dis-
derived; these

(z.t+)

(2. r o)

from which follow

['(t))8, {"(r)} , (2.L7)

(z.zz)

sets of Fourier

E,o {r(t)}:E,o {n,{" (r )}} ,

and the synchronized averagitg identity,

tim + fl ,(t *nT):I"o I r eiznkt lrN;;2N+1 oa* k

E, {r(t )}:Er {8, {r(f )}} (2.18)

(2. r o)

(2.20)

of its sine wave components plus a residual
the two fundamental assumptions it is shown
decomposes into i*pulsive and nonimpulsive

(2.2L)

l"g products is

(z.zz)

The modeling of a waveform as the sum
erratic waveform , (t ) ir discussed. Under
that the power spectrum of a waveform
components according to

,s_(/):x lrpl24f _g) +,s,,(/)
p

Some special terminology and notation pertaining to second-order or
given in Section 2.1.5. In particular, the ,4.P correlation function

R.uU,r)4 E t {r (t +r I z)y (t -r I 2)' )

and the AP conjugate correlation function
R,u,(t,r)A Et {r (t +r I z)y (t -r I z)}

are introduced and it is shown that {niur(r)} and, {Rin',(r)} are the
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coefficients of Rru(t,r) and R"y,(t,r), respectively.

Certain key results from spectral analysis are discussed in Section 2.1.6. The cross
spectrum SruU), defined as the Fourier transform. of the cross correlation function (2.6),
is shown to admit an interpretation as the correlation of spectral components per unit
bandwidth. The Wiener relation is derived. Cyclic spectral analysis is introduced as the
cross spectral analysis of frequency-shifted waveforms. The cyclic spectrum or spectral
correlation function S&(f), defined as the Fourier transform of the cyclic correlation
function (2.9), is interpreted as a frequency density of correlation between the spectral
components of r(f ) at frequency f *af2 and y(t) at, frequency f -"12. That is, the
Wiener relation applied to two frequency-shifted waveforms becomes the cyclic Wiener
relation of cyclic spectral analysis, namely

t +nt lz
lim lim 1 

f rf +o12fu), v polz(u)i, du
A/+0 Al-+co AtA f t-'ttlZ

where

'r(r)ra r(u)t-'Znfu 4u j (2.25)

and l/:LlT. It is then argued that a waveform exhibits cyclostationarity if and only if
it exhibits spectral correlation in the sense that S;(f) or ,9j, (/) is nonzero for at least

one al0. The Schwarz inequality is applied to (2.24) to yield a useful bound on the
cyclic spectrum magnitude

ls&(f) l<[,s* (f +"12)sru(f -"14]'t' (2.26)

It is shown that the cyclic spectrum decomposes into an impulsive component plus a
nonimpulsive component and that the impulsive component is associated with the sine
wave components of the waveforms.

In Section 2.I.7 an example of a signal model - namely frequency-shifted M-
dimensional pulse-amplitude modulation - is examined. It is shown that signals of this
type are in general almost cyclostationary and expressions for the cyclic spectra associ-
ated with the signal are given in terms of the message statistics and the model parame-
ters. These results are then applied to obtain expressions for the cyclic spectra associated
with binary phase.shift keyed (BPSK) and quaternary phase-shift keyed (QPSK) signals.

(2.24)

t+T l21r
Irr -Jt t-r 12
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2.1.1 Complex-Valued Waveforms

The extension of the theory of cyclostationary signals to include complex-valued sig-
nals is the most novel aspect of this dissertation relative to the related work of W. A.
Gardner [39]. The complex theory is important for many theoretical reasons. The
notion of a complex-valued signal has proven to be a very useful, unifying, and simplify-
ing concept in signal theory, random processes, and especially in communications theory.
In practice, many signal processing operations implemented on digital systems are con-
veniently described and implemented in terms of complex-valued signal representations.
Most previous work in which the signal being complex valued is an issue deals mainly
with finite energy signals, e.g.lz+1, and stationary random processes, e.g., [s+], [0t]. This
dissertation generalizes previous theory in a way that is appropriate for the study of
complex-valued cyclostationary signals.

Complex-valued waveforms arise in the analysis of communications problems in pri-
marily two ways. First, the analytic signal and complex envelope representations are
commonly used to simplify the treatment of problems involving real-valued bandpass
waveforms. Second, in problems where the frequency shif-t interpretation of multiplica-
tion of a real-valued signal by the complex exponential e'znlo' is exploited, the resulting
frequency shifted waveform is complex valued. In spectral analysis, for example, the slid-
ing Fourier transform is an important tool. Even if the original waveform, say r(f), is
real valued and low pass, the sliding tranSform,

t+T l2
X( t ,f ): I *(u)r-t2rf u 4u

t-r l2

is a complex-valued waveform. A complex-valued waveform is nothing more than an
ordered pair of real-valued waveforms. A set of complex-valued waveforms together with
the rules of complex algebra form a complex waveform space in which the ordered pairs
of real-valued waveforms are manipulated and interpreted in the time and frequency
domains as if they were scalar waveforms. In the approach taken here, complex
waveforms are taken, not as waveforms derived from real-valued waveforms, but as fun-
damental entities. A real-valued waveform is considered a special case of a complex-
valued waveform, viz., a complex-valued waveform with its imaginary part equal to zero.

The following representations of complex-valued waveforms are useful throughout
the dissertation. Let {r"(t), n:L,...N} be a set of complex-valued waveforms with an

associated vector waveform,

x(t)A ["r(f ), . - . r,v(f )] 
t (z.za)

The real and imaginary parts of x(t) are referred to explicitly according to

x,(t14 Re{x(r)} , (2.2e)

(z.so)Im{x(f)} ,

thus

*(f )==a<,'(t)*i xr(t)

A representation of x(f ) involving only real-valued quantities is sometimes desired.
convenient form is the real extended aector denoted by the overbar,

(2.27)

x;(r)4

(2.31)

A



l<n <,4/ j

.A/< n{2N
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(2.32)

(z.aa)

(z.rs)

(2.36)

(2.37)

(2.38)

(z.r o)

i*(r )4

Note that J is unitary, i...,

because

JJIT

where superscript H denotes the
denoted by the hat notation as

i,(f )a

Conversion

conjugate transpose. Define the compler ertended uector

I*" {*n( t )l for

lt* \ro-r(t )I for

Note that the mapping between x(f ) andX(f ) is one-to-one but is nonlinear and does not
preserve dimensionality since the dimension of x(t) is twice that of x(t). An invertible
linear transformation for converting between two representations is advantageous in
matrix manipulations. Consider the 2N-by- 2N transformation matrix

1ArIrrl": -h f-;I ;rl Qs4)

between x(t) and *(t) is accomplished via the unitary transformation,

t,*t,):g[l ;l][:,i:]]

*(t)A 
|-:l;l

3--t :JH

drl

-,rl -r '
:+[-,i j]LI

+r,(t) for Ll<nSN ,

1,
#rn-rv(f )' for N< n{2N

*(f )A
1 [*(t )

GL*(t)'

(2.+o)1l*,(t)+ix;(t)l-6 [*, U)-i*,(f )J '



1 l*( t)-6 L"(,)'
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(2.+t)

(2.42)

(2.43)

(2.45)

(2.+o)

r"*(r )-*(r ) j

and from (z.ts),

*(f )-r*(f )

Note that the definitions and transformation remain valid even if x(f ) is real valued in
which case x(t):[*(l)t or]r and *.(t):(Ll\/r)[*(t)" *(t)"]t. In'summary, a set of
complex waveforms can be represented in vector form, x(f ), real extended form, x(l), or
complex extended form, *(t). The utility of the extended forms stems from their connec-
tion via a nonsingular linear transformation. The overbar and circumflex notation is
reserved for the extended vectors and is used extensively throughout the dissertation.

2.1.2 Product'Waveforrns
Throughout this section z(t) denotd3 a product waueform of the general form

K
z$):2xlz ff 6,11y(r+rp) , Q.44)

ft:1

where ,tU), rz!), ' ' ' "xU) are the finite power waveforms composing the complex
extended vector * defined above, e.g., ir:rrf\/2. The index mapping n(,t) selects a par-
ticular waveform from the set {io n:L,' ' ' 2N} for each value of the product index &,

and {4 } is a set of positive or negative time lags. The number of factors, K, in the pro-
duct is called the order of the product waveform. Examples of first-order-product
waueforms are c(f ) and y(t+a)'; second.-order-product waueforrns also called lag products,
r(t+a)y({+a)', and r(t+a)y(t+6); and fourth-order-product waaeforms ,

rr(t)r2ft)'4ft)'xa$) and 11(t)rr(t)rt(t)xnft). Throughout the dissertation, all finite.
order product waveforms are assumed to be finite power waveforms. (This is a special
case of Fundamental Assumption 1 to be described shortly.)

Statistical averaging in this study invariably involves the limit time average of a
frequency shifted first-, second- or fourth-order-product waveform. Consider the follow-
ing single-sided averages,

ar.T7 p=iTL +tz(u)u-t 
2n0u du, (righr average),

0

t pA ji* * t ,(u)u-'Znflu du, (tefr average),
' T---+oo I ryt

where z(f ) is some finite.order-product waveform and. p is the real-valued frequency shift
variable. Not all finite power waveforms are considered in this study. The class of
waveforms treated is restricted somewhat by three assumptions, the first of which con-
cerns the existence of limit time averages of the above form.
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Fundarnental Assurnption 1.
All frequency-shifted finite-order products of waveforms of interest are assumed to pos-

sess left and right limit time averages. That is, given a set of waveforms

{""(t), n:L,.. . N} with z(f ) formed as in (2.44), the limits in equations (2.45) and
(2.46) exist for all i, K, index mappings n(fr), and lag sets {r1r,k:7,K\. The integral of

1"ft)12 over every finite interval is therefore finite.

Under this assumption fhe single-sided averages do
is,

not d.pend on the starting time, that

T

lim
? --+oo

o*T

+t ,(u)e-i2tPu d,u (2.47)

Since this property is the basis for many subsequent results, a detailed derivation is

given. First consider the single-sided-average form of a lemma due to Wiener ([76], page
155). Suppose that c(l))O for all t and let 0(o(oo. An increase of the integration
interval cannot decrease the value of the integral of a nonnegative function,

o*T

(2.48 )

T o+T

*1,(u)duJ-o I o t0

which holds in the limit as

T

/*+t*(u)du-

J'-+cc. But
To

Ji- l+ I,(u)du -* t,(u)dul,1-+oo J- 0 I0
(2.+o)

(2.50)=fo ,

since trru)d.u is assurned to be finite, while
0

T+o T+o

;'** {'(u)du:;Tl(1+ }t# {'@)du

-,r3i(r+ st'g +lr(u)du

:Tg .

Since the limit of the rniddle term
equal to?s, i...,

(2.52)

(2.53)

in (2.48) ir bounded from above and below by?0, it is

(2.51)

(2.54)
o+T T

rim + f ,(u)du - lim *f r(u)du
r--*L T t, \ '/ ?-*oo Tto



A similar argument can be made for o{0, thus {2.54) holds for all o and an equivalent
result holds for the left average. This result is now used to prove (2.47) following the
method of Wiener ([76], page 155), as generalized by Kampe de Feriet ([5f], page 159).
Applying the identity

r)
ob':I{ l"*u l'-1"-t l2+; la+ib l'-.; la_.;b l'zl (2.55)
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(z.s o )

(2.57)

(z.sa)

(2.5 e)

(2.60)

(z.o t)

to the product z(u) r-t2nou
T

7u:lim +tz@)eP r---+oo L o

yields

-i 21 0u 4u

lr(")+r i2rPu 
12- lt(")-e i2rfu l':+/,*+l 

{

+i I t @)+;riTr eu l'_.; I t (u)-ieiTn eu ,'\^ ,

*, tim +l l'(") *iei2nou l2au -;T+oo 41''o '

Each of the four terms in this expression is of the form
T

,+r:l.o;i1 +tlr@)+r* ,i\rou l'du ,

r. I 
T

? --+co 4T o

T

A

P -s limP 
? --+co

T

Iim *f lr@)-e i,nPu l'du
? -+oo 4T to

T

rim +[ lr(u) -ieiZngu lrdu
T -+co 4T to

:+'xP,+rf? p+cft i+ I'r 11,

where
T

+t l'(") l' a"

and cpe{+f,+;}. Therefore, each term exists because F, and,?p arc assumed to exist
by Fundamental Assumption 1. Since each term is an average of a positive function, the
previous lemma applies and thus

o*T

{
At:lrr limq ? --+oo

| , (u )+ ,iLnf u l'du (2.62)



Substituting this form for each term in (2

-.--r r. I 
o

Z' n- ltmY ?-+oo T
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desired resu lt,

du (2.6 3)

The corresponding result for the left average also holds.

Tf z(t) is a lag product, the requirement that P, exist for (Z.Of) to hold is overly
restrictive. Let z(t):x(t+r1z)y(t_rlz)' and apply identity (2.55) to evaluate?p with
the associations o:r{t+rlz) rnA A:y(t-r1z)riz'P'. A sum of four terms is obtained as

before with each term having a form analogous to (Z.SO),

7 p-Ar+Az+Az*A E 1

T

tr:Iro rli* +{ lr( u*rlz)+c*afu_rlz)riTtgu l'au ,

(2.64)

:+rn@,+c;7p+r/;-r lcr lry; ,

(2.65 )

(2.6 6)

r-!
and 7 p exist.where c* €{+f ,+r }. Therefore each term exists provided that P ,, F c,

Application of Wiener's lemma then yields the desired result
o*T

-- 1 r ,? u:,]r\i I rfu +rlz)y (u -; lz)' r-iLreu 7u (z.oz)

provided that P, ,Ps, and?p exist. The corresponding result for the left average also

holds.

A theory parallel to the above but in terms of double-sided averages can be
developed. Consider the following alternative to Fundamental Assumption 1.

Fundarnental Assurnption 1b.
All frequency-shifted finite-order products of waveforms of interest are assumed to pos-
sess double-sided averages, i.e.,

Ar.
z B: llm

'T+co
t (u) e-i2r ou 4u (2.68)

exists and therefore the integral of lz(t) l2 over every finite interval is finite.

.58) yields the
+T

t 
t(u)e-i2t3u

rlz

+ {,,

Wiener's lemma holds for double.sided averages:
o+T 12

,(t)>o ===+ /'* i,_[rtzrfu)d,u T *oc
, (u) d" (z.oo)

r 121r
I

rFJ1 -r lz

It can be shown by a means analogous to the single".sided case that if zB exists and P, is
finite then double.sided averages do not depend on the time origin,

o+T l2,. 1lim - f tfu)e-i2roudu: zp
T *q T o-1r l,

(2.7 o)
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AIso, if z(t):r1s+rl2)y(t-rl2)'is a lag product, the requirement that P, exists is
overlv restrictive. Equation (2.70) holds provided only that r(t) and y(t) have finite
power and zp exists.

If Fundamental Assumption t holds then Fundamental Assumption lb holds as well
since

zp:f,Ve+tcl

For a particular waveform r(f), existence of the double-sided average alone does not
imply existence of left or right averages as is demonstrated by r(f ):t which possesses a
double-sided average but not single-sided averages. Note that the double'sided average
of u (t):/ depends on the time origin but thatP, and.P, do not exist.

The distinct results for single- and double-sided averages are unified by Fundamen-
tal Assumption 2 discussed in Section 2.1.3.

An additional but minor assumption seryes to simplify the study of cyclic spectrum
analyzer output convergence in Section 5.1 and privides useful approximate formulas for
the variance of the output of a cyclic spectrum analyzer in Section 5.4.3. All communica-
tion signal and noise models knolvn to the author satisfy this assumption, If zB#0 then
Iet Cg:{. The set ,4. is shown to be countable as follows. Consider that

T12

-ri- + / lrU)-E "u"i'ne' l2at > o
r'+6 t _T 12 BeA

Expansion of the integrand and integration of each term individually yields

E Irelr<p,
9e'a'

(2.7 2)

(2.7 3)

Under Fundamental Assumption 1 it is assumed that P, is finite. Therefore, since an
uncountable sum of finite values cannot be finite, the set A is countable. That is, there
is at most a countable number of values of p for which zpfl.

Cycle Frequency Separation Assurnption.
For a set of waveforms {r"(t), n:1,.1V} consider all first- and second-order-product
waveforms of the form of z(t) in equation (2.44). Let .9 be the set of all values of B f.or
which zBfl taking into account all index mappings z(t) and lag sets {4}. .9 is count-
able since it is a countable union of countable sets. The set ^9 contains at least one ele-
ment .9:0. If .9 contains two or more elements, assume that there exists a nonzero
minimum spacing between them, i.e., if z p*O for some B76, 61tutt

Af*ioA mirl l"-tJl >0.
d*p

CI€s,ges

This insures that there are at most a finite number of values of p for which z B*0 within
any finite interval.

The set of averages of all possible frequency-shifted product waveforms formed as in
(2.44) constitutes a statistical d,escription of the given set of waveforms {rr(t)}. This sta-
tistical description is sufficient to treat the applications of interest in which time average
performance is the primary issue and signals whose products contain periodic components
play a role. Consider a waveform z(t) satisfying Fundamental Assumption l with asso-
ciated product waveforms of the form of z(t) in equation (2.44). If zpfl for at least one

(2.7 L)

(2.7 4)
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Ktl-order product z(t) then let tJeAo. The set of frequencies Ay is called the Kth-
order cycle spectrum of r(t) ( Ax can be empty). A useful classification of waveforms is

based on the nature of the cycle spectrum. If zp:g for all ll0 and all product orders K,
i.e., leAx ---> il:O, then c(f )is said tobe purely stationary (PS) in th.e strict sense. If
z(t) is not PS in the strict sense and zp is nonzero only for integer multiples of some
fundamental frequency, i.e., il€AK i i:nrto, n an integer, then c(f) is said to be

purely cyclostationory (PC) in the strict sense. Otherwise, r(t) is said to be almost cyclos-
tationary (AC) fn the strict sense [39]. This classification partitions the waveform space
of interest into three disjoint classes. If a set of waveforms or a waveform vector is of
interest, the same definitions apply but the modifier jointlg is used, e.8., o set of
waveforms is said to be jointly PS, jotntly PC or jointly AC - all in the strict sense.

Examples of PS in the strict sense waveforms are the constant waveform r(t):1 utt4
thermal noise from a resistance in a constant environment. Examples of PC in the strict
sense waveforms are the comp.lex sine wave r(t):"iznx', \76, 

"nd 
th" amplitude modu-

Iated waveform r (t):y(t)"'"^t, \10, where y(i) ir any real-valued waveform that is PS
in the strict sense. The sum of two PC in the strict sense waveforms with incommen-
surate fundamental periods is an AC in the strict sense waveform.

Many signal processing problems can be analyzed without recourse to product
waveforms with orders greater than two.- Given a waveform as above, if z s:0, )10, for
product orders K:l and K:2, for all lag sets and index mappings, then z(t) is said to
be purely stationary in the wide sense. If c(t) is not PS in the wide sense and il€AK,
K:l and K:2 --?"- !J:ni|o, n an integer, then r(f )is said to be purely cyclostationary
in the wide sense. Otherwise r(f ) is said to be almost cyclostationary in the wide sense.

As before, this partitions the waveform space into three disjoint classes and the
definitions apply to sets of waveforms using the modifier jointly. Clearly a waveform
that is AC in the wide sense is also AC in the strict sense whereas a waveform that is PS
in the wide sense is not necessarily PS in the strict sense. The strict sense classification is

seldom used in this dissertation. Therefore the terms purely stationary, purely cyclosta-
tiona,ry and almost cyclostationary refer to the wide-sense definition unless specifically
stated otherwise. Also, the term cyclostationary will sometimes be used to mean a
waveform is either PC or AC. This particular terminology is inconsistent with the ran-
dom process literature where cyclostationary refers specifically to periodic time variation.

The K'r-order product of (2.aa) can be expanded into a sum of K'r-order products
involving the real and imaginary parts of iolp;, k:lrK,

K
z(t)-zk 12 TI(R. ,rl,io(k)( t *r1,))+;Im{io(ft)(t +rp )}) ,

k:1
(2.7 5)

zKK
t(t): I r, TIr*(k,p1(t +rp ) ,

P :t 't:1

(2.7 6)

where cr€{*t,+i} and *(k,p) is an index mapping determined by n(&). The set of all
possible-mappings n (/c) translates into the set of all possible mappings m(k,p). It fol-
lows that the waveforms ra U), ":1,N are jointly strictly PS, PC, or AC if and only if
their real and imaginary parts are jointly strictly PS, PC, or AC, respectively. The same
statement applies for the wide-sense definitions.

2.1.3 Sine'Wave Cornponents
Consider the finite-time sliding Fourier transform scaled by llT,

t+T lz

"BU)ra * I z(u)e-i2"8" d.u ,t t-T12
(2.77)



r1
- J |"r(t__u)t(") e-i2reu d,u

J._1t )

:{ r(t-u ) +"r!)sizre' d,u

-t9 (t) r e-i 2r ot 
,
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(2.7 8)

(2.7 e)

(2.80)

where

and

ur(, )4

<r 12

:T 12

>r12,

II

II

Ir

Ir

It I

e-i 2tr Bt

,p(t) r
local

frequency
component

(2.81)

,P(il r- I ,(t -u)+"r(,)s;zng, d,u

The quantity zf(t)r, called the local spectral (or frequency) cornponent of z(f ), is a
bandpass filtered version of z(t) with passband centered at frequency B and bandwidth
approximabely llT. Frequency shifting the local frequency component to baseband
yields the low pass waveform zp(t)1 called the d,emod,ulate or lhe cornplex arnplitud.erela-
tive to i9. A block diagram showing the relationship between these quantities is shown if
Figure 2.1. Note that the bandpass filter transfer function has a gain of unity at its

e-i2nPt

'p(t) r
complex

amplitude

(2.82)

, (t)

bandpass
filter

Figu re 2.1 . Local Frequency Component.

bhe memory span T . Let

h(t):+ ur(t)ri2ngt ,

center frequency regardless of

(2.83)
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(2.84)

In the limit of infinite T , the filber i*pulse response ap
function approaches the perfect sine wave component ext

rim H(tt--{\ 1o' r:')
? --*oo t' / lO for f #;)

then

and

The quantity

where

H(f)- sinn-fU-,i)
t T (/-,1; 1

I1( iJ)- t

cL _lim [*r(r-)dt and lc lccc ,
? -+co"

(2.85)

proaches zero while the transfer
r actor,

(z.a o)

(2.8e)

tB1t14 lim zP(t)r : ,s"""' (2.87)\/?+m

can be interpreted as the output of , fiIi". with transfer function Itjlttlt and is thus

the sfne w&ue conponent of z(t) at frequency ;1. The rectangular shaped averaging func-

tion, fu1(t), is not the only function possessing the above properties. Let u1(t) be a

low pass pulse parameterized by its width T, for which

]**w,.n:{i i:: 
,iz, 

(2 88)

and for which

(2.e0)

exists. Then, ignoring mathematical technicalities,

]r\[rV-u)w7@)e;2no'du:,"BU) 
. (2.e1)

Examples of averaging functions satisfying (2.88) with c:1 are the triangle

wr|f:|tr-$),rr(t) , (2.s2)

and the scaled sinc pulse

/g/ r(t _-u)*r(, 
) ri,rea 4,

wr(f ):sin(zrf /r\ - {ri' ce lr) .
iTt T \

I

(2.e3)
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Ordinary convergence of the single-sided averages, (2.45) and (2.+0), is insufficient to
guarantee certain important results. Also required is the following assumption.

Fundarnental Assurnption 2.
Consider a pair of product waveforms r(t) and y(t) and the associated sine wave com-
ponent amplitude estimates rp+on(t)1 and gB-*p(t)r. The amplitude estimates are
assumed to converge jointly to their respective single.sided and double-sided time aver-
ages in the following sense:

,f* J** IV o*.1r1)r-? p+-tz]V e--p(t)]-Ti-"1rlat:o , (2's4)

J

i$ rt** IV o*.1r:-)r-t p+,tz)W o-*1rU)|:v i-"trld't:0, (2'e5)

s

,t* ,t** Ilrp+.p(t)r-! p+.tzllv p-*1r!)i_.vi-,tr)d't:o , (2.e0)

where

? p(t)ra 
+t*1,' 

,(, ) e-;Zngu 4r: , p(t +r l2)r , (2.e7)

t

t p(t)rn i,lrrtu)e-i2neu rtu : xp(t-r l2)r . (2.e8)

These relationships are generalizations of the more familiar assumption that the sine
wave amplitude estimate zp(t)7 converges to its time average in the mean square sense.

That is, for the special case of z(t):r(t):y(t) and cv:O, (2.94)-(2.96) become

lim ,,* *i V p(t)r3 pl2dt:o , (2.ee)
1"16p g+co rs 6

,orim tim-:lvp(t)r$el2dt:0, (2.100)
?+oo S+oo,5-g

s12.. 1lim limi/ l"B!)r-zBl2dt:0. (z.LoL)
?+oo 5+oo S -tl,

Although these assumptions are difficult to interpret directly, the properties that follow
from them have straightforward interpretations. It can easily be verified that,? p,T p,

and z3 are the appropriate time ayerages of?Bft)r,TpU)1, and tBU)r, respectively,
e'8't



s

li* *pBU)rdt- tim
S--+co J t S+co

t (u)r -t 2t ou d,udt

S t+T

*{+ r,

J

i{'u*u)e

s -r l21r
I

,s _ln
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(2.102)

(2.103)

lim lim
? +oo S -+oo

But by assumption (2.99),V r,@),
(2.L10) intplies that

s

tim lim *t V B(u)r-zBl'd,u_-o
? --+co 5 -+oo J "0

-iTn 0(t +r) d.td.,

V p(u) r -z B l'du -o ,

converges to? p in

zg:z p ,

Ieft-, right-, and double-sided

- -zB:z p:z B

(2.roe )

the mean square

(2.r10)

sense. Therefore

(2.111)

averages are necessarily equal,

(z.rL2)

T

-1 lrim
T tos+oo

T u*S:il;*i

3u

lim lim 1t'" t-'(
?--+oo s*-i { l'B(t) r -z P

0

l'at*rim lim+ I lrB(t)r_zpl'at-o.' T---+oo .9 --+oo 
^9 - t l,

Since the integrands are non-negative, each term must individually converge to
s

lim ri* f1 l"p!)r-zBl2dt:o ,
?+co S+oo ,S g

and using t B(t) r4 r(t -f 12)r,
s

lim lim \f V r(t- r lz)y-zpl'dl:o ,
? -+co S -+oo S '0 

I

(2.104)

The simultaneous requirement that the single'sided and double-sided averages converge
to their time averages in bhe mean square sense implies a particular relationship between
the single-sided and double-sided averages. Equation (2.101) can be reexpressed as

(2.r05)

(2.106)

zero, thus

(2.r07 )

(2.r08)

and since z o:(1 lz)V e# 01,
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In particular, if ,(t)- | r(t) l' and r/:0 , (z.LIz) becomes

P":F ':F' (2.r13)

One of the ramifications of Fundamental Assumption 2 is thus that the waveforms con-
sidered are restricted to those for which left-, right-, and double-sided averages are ident-
ical. This is consistent with bhe concept of a persistent waveform for which sufficiently
long local time-averages tend to a value which is independent of the time location. The
remainder of the dissertation deals exclusively with double-sided averages.

Fundamental Assumption 2 can be reexpressed in terms of a property of the cyciic
cross correlation function defined in Section 2.1.5 and analogous functions for single-sided
averages. Since the derivations are essentially identical for single- and double-sided aver-
ages, only the double'sided case is presented. Expanding the integrand of (2.96) into the
form

rp+op(t)rv o-.p(t)i - rB+olz! p-.p(t)i -'Bn,lzU)rvi-*lz * x1+alzvi-,lz Q'll4)

and using (2.105) and (2.tfZ) yields an expression equivalent to (2.96),

, s12

r p +o I z! i - o7, : rli3- rl*i_ f , 

x B+o p(t ) r v p-, t zl)i at

:;TL+/ I u, (o) u r (b ) R &(b - a ) e; 
n o(n +b) 

"; 
2r(0+a I 2)o r-i 2t(A -a I z)b d,adb,

:rtg+/ [ u 7 @ -r I z) u, (, +r 1 z) R,iQ) r-i 2o f 
' dad r,

: ]r\+ I I u, - p (u)duu zr1)R,fi(r)e-izT tu 
d, r,

:.1g/+, r, (r)g-!)R,i1) e-iz'e' d. r,

(2.Ll5)

s12

:rtla+J !u7@)u7$ug*_lr, ft-a1e-;z^(o+o/z\(t-a)o(t-b)'ei2*(p<lz)(t-tl4sod6, (2.116)

(z.rLT)

-rim f*f1-4-|-l uzse)dus;;J s' 
^9

and therefore

R &(r) t-iLn1r 4 , ,lim
? --+co

r 12+It -r12

(2.r18)

(2.Lle)

(2.L20)

(2.L21)

r P+o lza c-" lz :^lim
'T-+oo

r 121r
^Jt -r lz

R;(r) r-izn or 4 , , (2.r22)
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where

R;(')a,$: , (t *r lz)y (t -r lz)' ,-i 2rat dt (2.L23)

is the cyclic correlation function discussed in Section 2.1.5. The amplitude of a sine wave
component in the cyclic correlation function is equal to the product of the amplitudes of
the pertinent sine wave components in the waveforms themselves. Note that if the
waveforms contain no sine waves then neither does Rri!), and its transform, ,9fi(/), con-

tains no impulses.

In the special case of y (t)-" (t ) and

r12
1r
^J1 -r lz

lrBl':;*i

r 12

R,,( ')A /=l i -[ ,,, 
(t *r lz), (t -r I z)' d,t

4 _.J. lz

cr.':0 , (2.122) becomes
r12

I R,,(t) r -i 21 8r g - ,,

-r l2

zo(u) r:
-1 for
2u^ Ior
T

1 for

u{-f 12

l" l<r 12

ulr 12 ,

(2.L24)

(2.L25)

(2.L27)

(2.L28)

(2.rze)

where

is the time average autocorrelation function. This is equivalent to the statement that
l"p l' i. equal to the strength of the corresponding sine wave component of the auto-

correlation function. The significance of this assumption is discussed later in connection
with the sine-waves.plus-residual signal model. An example of a waveform that violates
Fundamental Assumption 2 is the signum function,

f-t t <o
z(r):srrr1l1 a ] o f:0 (2.L26)./ 

I

|. 1 r>0

This function satisfi.es (2.99) and (2.100). However, for this function,

zo:0 j

for l" l>r 12

for -T 12< l" l<r 12 ,

t,
-l 4 z

lr'"

+_{ ,

lro(u)r-zsl'

lim
S +co

I

(2.130)Ito(u)r-zslzdu-L ,
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(2.L31)

s 12

lim lim + f l rr(u)r -zsl'du:L#o .

T+ooS+coJ_Sl,

Clearly the order in which the limits are taken in (2.9a)-(2.101) cannot be interchanged in
general.

The right sides of (2.115) and, (2.L22) are equal regardless of whether or not Funda-
mental Assumption 2 is satisfied. In particular, for x:y:z 2pd 61:,rJ:Q, the equality
between the right sides of (2.115) and (2.L22) becomes the identity

, slz - sl2

;=lrt** _[,,1"0{r),l'zar:rril} _[1rR*('1a' Ql32)

It follows from (2.t32) and (2.131) that, \t z(t) is the signum function, the average oyer r
of R,,(r) is one. Evaluation of (2.125) for the signum function yields the consistent
result R 

""(r):L.
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2.1.4 Sine'Wave Extraction
Let the (singte) sine waue extraction operator, denoted by E,P{'), b" defined accord-

ing to
rl2

n,fr{zg)}Lrp1)A-li** tz(t-u7ei2n0'du, (2.133)
I +oo -t 4ln

-t lL

:/TL 
'B(t) r '

(2.L34)

The followittg notational convention is adopted. Le
tinuous variable 0 in the sense that

Itur#O for fl-Fr,,k
t r: l.o otherwise

i2n0t:Z 
B€

(2.r35)

Let ^9 be the set of all values of i9 for which zp*0. There are at most a countably
infinite number of such values since an uncountable number would contradict the
assumption lhat z(t) has finite power. Define the (complete) sine waue ertraction opera'
for, denoted by \{z(t)} or;(t), as the sum of all the nonzero sine wave components,

7(t)=E1{z(r11 A Err"i'net. (2.136)
pes

(z.LBz)

and let ^9' be the set {l91r,lc:1,2,3, ' ''}. Note that,S' is the set of all values of I for
which sB is nonzero. Then define

\ru"izoota I spe;ztt?t . (2.138)
B Pes'

This notation facilitates changes of variables in multiple sums and is used extensively.
Since zp is a discrete function of B as required, equation (2.136) can be abbreviated to

Q{z(t),t:\z pe;2,tPt . (2.139)
p

Several simple but important properties of the sine wave extraction operator are
apparent. These properties are used freely and often without comment throughout the
remainder of the dissertation. It follows directly from definition (2.136) that the operator
is linear,

fi {ay (t)+bz{t)}:oE, {y (t))+bE, {"(t)} , (2.140)

and time invariant,

t s p be a discrete function of the con-

:1,2,3, . . .

(2.L4L)



The sine wave components of the conjugate of a waveform are the
wave components of the waveform, i.e., from (2.133),

Aro{z(t)'):lz-pe-iztrfrt1' :,' p"i2ngt,

and

Et{,t( t)'i- I tlpri2net
-0es

- 
y 7,J p -i Zn\J
./ r"A"
\eS

-[I z>.€r zzrxt 1' ,

)

-Et{t(f)}- .
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conjugate of the sine

(2.L42)

(2.L43 )

(2.r44)

(2.145)

(2.L46)

reality,
is real

(z.t+z)

Fourier series representation
a trigonometric series of the
of this dissertation almost
has a trigonometric series

Thus the notation Z(f )'is unambiguous. It follows that the operator preserves
i.e., if z(t):"11)' is'real valued trrln rr {z(t)}:E,{z(t)'1:p,{r(t)}', thus Z(r)
valued.

Almost periodic functions play a central role in the theory of cyclostationary sig-
nals. The definition of an almost periodic function is more cumbersome than necessary
for the purposes at hand. Bohr's theorem can be used as an equivalent definition [t0]
[75]. A continuous function /(r) is almost periodic (AP) if and only if, given any e]0,
iheie exists a finite set of complex numbers {forn:l,N} and real numbers {fro,n:l,N}
such that

N

I f u)- t f n eiznpo' I <. for alt t
Z:1

Clearly periodic functions with an appropriately convergent
are also almost periodic functions since the Fourier series is
form above with integrally related F o. For the purposes
periodic will be taken to mean simply that the function
representation,

f(t):t/ pr;Znnt ,
p

(2.L48)

for almost every f . Questions concerning the type of convergence or lack of convergence
of the series will be ignored. From the defining equation, (2.136), Z(t) is by construction
almost periodic. Extracting the sine wave components of any almost periodic waveform
yields the waveform itself. Let s(l;a 5"1rd2n^t. Then

\
r12

, (r )-f -tim + I , (u )r-t\nPu duei2nf t

p I ---+co t _r 
12

(2.L4e)



-)- lim
B,\t -+oo

s \ € 
r 2zi(x - (t)u 

d,uei 2n ct

-I s Bei,not
p

-r(f) .

For example, consider the limit discrete-time average

s,(t,r)*,J1i#,{;( r + nr )

r 121r
r_l ,,
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(2.r50)

(2.r51)

(2.152)

(2.L53)

Since sr(t ,T) is periodic in t , the above

lim + g ,U*nr):n,{
N--+co 2l/+1 n:_N

property applies, i...,

r. 1
Irm

N.+oo 2.,4tr+1

N

I 'U*nr))n:-N
(z.Ls4)

N+oo 2N+1

N

I E,{r(t*nr)}
Z:-N

(2.L55)

(2.L56)
N-+oo 2N +L "?x'B

-)- zn€,i\ngt lim 1
Y N+oo 2l/+1p

-I ,x lr ,iznkt I r -

k

And if Et{"(t)} is periodic with period T then

lim -.-r+ - g ,U*nT):8,{r(r)} .
N-+co 2N +L n:_N

(z.r5z)

(2.L58)

(z.Lbe)

Equation (2.153) is referred to as the synchronized, aaeraging formula. Since 5(t):s(t) if
s(f ) is AP, the generic almost periodic waveform is denoted using the tilde as in s(f ). It
can be shown that any time-invariant, memoryless, and continuous function of one or
more AP waveforms is AP. For exampte lS(t) l2 and E(t)y(t) are AP and 3(t)/y(t) is
AP provided that lt(f) l)0 for all f . It follows that the sine wave components of a
product of AP waveforms is the product of the sine wave components of each waveform,

N

I ,i2n0nT
n:-N

(2.160)



Furthermore, the sine wave component extractor factors as above even if just one
waveforms is AP, i.e.,

E,{'(f )r(t)}-I^lim
B1+oo

r (" )t(u)e-iLnou dueiLnot
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of the

(2.161)

(2.L7 L)

obeys the relationship

r 121r,-Jt -r lz

r 12+It -r lz-)l lim
T^r --+co

s\Z (" ) e-;zn(o-\)u d,uriLn9t

-I s \ zB-\ ,iTn ot

p,\

-fs\Z oriZr(a+\)t
0,\

-r ( t)z (t) .

An i*portant special case of this property is the frequency
3 (t ):t izt fi , equation (2-L65) becomes

E, {t (t) ri 
2n ft ):7 (t) ti 

2n ft' .

(2.L62)

(2.163)

(2.164)

(2.165)

shift relationship; letting

(2.L66)

as in (2.L33) it is often simpler to obtain
extracting the particular term of interest,

(2.L62)

(2.L68)

(2.L6e)

(2.L70)

If just a single sine rvave component is desired
the sum of all the sine wave components before
that is,

n,P{8,{r( r)}} -E,P If z\,ei2zr\r 1 
,

\

-I txnf {ri?n\'t \ ,
\

:z pri2nft

-E,P {'(r )} ,

Itt particular,

E,o {8, {'(r )}} -E,o {r(r )} .

of a frequency shifted waveformA single sine wave component



E r0 { t (t *r) e-i 2r'\'t 
\ :E 

r3,ri,z (t *r)\, e - i 2r\' t

-E,i' iI z^teiZa(r +r) e-;2r\r t

^lI

:E ,c { 5- z ^, ei 2r(t -\)t ,i 2'^t' 
I"t l/J*nt "

^lt

:\- Iim
7 r+oo

,i 2zr(r-\ -0)" d.ueiTr 0t ,iLnlr
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r 121r
,T' Jr- -r lz
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(2.r7 2)

(2.r73)

(2.L7 4)

(z.Lzb)

(2.L7 6)

(2.L7 7)

(z.Lz8)

(2.L7e)

For example,

E,o {, (t) ,-i 2n\', 
} _'rx+g ,i 2r o t

E,g {t (t +r)}:, pr; 
zn o(t +r) 

,

E ro {t (t +r) e-i Zr\'t }:rx e 
i Zn\'r 

.

A waveform , (t)
residual signal r (t );

where

can be decomposed into a sum of its sine wave components plus a

t(t):Et'rr(r ))+ r(t)-f z BeiTnpt +r(t) , (2.180)
B

, (t)L ,(t)-8, {'(t )} (2.L81)

The residual signal has no sine wave components since

E, {, (t)):8, {, (t)-8, {,'(f )}} ,

-Et 'rt (t) t\-P, {8, {t (t )}l ,

-Et'rr(t)l-nt\z( t)l ,

-0.

This decomposition, called the sine-waves-plus-residual signal

(2.L82)

(2.L83)

(2.L84)

(2.L85)

model, it an i-portant



conceptual and analytical aid. The time.average autocorrelation
funcbions are defined in the followirg paragraphs. It is convenient,
here an i-portant second-order property of the sine wave plus
The autocorrelation function for t(t) it

r l2
R,,(r)a lim + t ,U *r lz) r(t -r l2)* dt j

?-+co T -f lz
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and power spectrum
however, to point out

residual signal model.

(2.L86)

(2.187 )- lim
? ---+oo

r12
1r

I
trt Jr' -r lz

l, (t *r lz) r ( t -r 12)' +I z pzi r 
t zn 0(t +r t2) e-i Zn\'(t -r tz)145

p,>,

lD, Brizr 
P(t +r1z), 

U -r I z)' +I, Up\ -r I z) t i e-i2r\( t -r rz)1 4s+ lim
? --+co

r12

+I1 -r lz

Now, under the
bal Assumption

- R,, (r)+I | ' B l' ,'2r 3r

0

assumption that t B(t) r converges in the mean
2), (2.L24) holds, and

r l2
i. 1

Ji* + t R,,(r)r-i2nur 4, ,1+co t _f lz

(2.t88)

square sense (Fundamen-

(2.L8e)

(2.reo)

(2.Le 1)

I'ul':

r l21r
I

r_{p(R,,(r)+I l, pl','2ner1e-;2nvr 4,
p

R ,r(r) t-iLn F'r 4 * ,

Rrr(r)t-iznP't d r-.0 for all l(, .

-l'ul'+/1;
T12

+It -rlz

r12
1r
,r, Jt -T12

residual signal autocorrelation function contains
the power spectrum,

^gr, 
( il: I R,,(r) e-i2n fr 4 -

thus

lim
I ---+oo

no srne wave

(2.Lsz)

components

(2.Le3)

That it, the
and therefore

contains no i-pulses. The power spectrum of z(t) ir thus
and nonimpulsive components accordittg to

s ,,( f)-.I I ' p l'q, f -it)+s, , (f )
B

decomposed into ibs i-pulsive

(2.te4)
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2.1.5 Second-Order Averages
Since second-order averages are frequently referred to, certain key functions are

named and special notation is adopted. For a pair of waveforms r(l) and y(f ), define
the AP correlation function

R rv\,4E Et{"( t *r lz)y ( t -rlz)' I

and the AP conjugate correlation function

R ,0,(t ,r)A Et \,r( r + r l2)y (t -r lz)\

(2.Leb)

(2.re6)

(2.Le7 )

(2.Le8 )

(2.20L)

(2.202)

(2.203)

(2.204)

If y(t):"(t) the above functions are called the AP autocorrelalion and AP auto-
conjugate correlation functions respectively. Note that R,r,(t,r) can be regarded as the
AP correlation function for the waveform pair z(t) and y(t)'. If the waveforms are real
valued the functions are identical and the qualifier conjugate is superfluous. In addition,
define the cyclic correlation function

R&(r)a E,ol"( t *rlz)v (t _rlz)' r-iztrat 1,

-E,ot" ( t *rlz)y U 
l, 

t2r). ) e-iZna' ,

and the cyclic conjugate correlation function,

R;, (r) L Et0{"(t*rlz)vU-rlz)r-'znat 1 , (2.Lee)

(2.200)-E,o t" ( t *r lz)y (t -r lz)\ ,-i2rat

where g,o{.} is recognized as an ordinary limit time'average. As above, if y(r):r(1) 15"
above functions are called the cyclic autocorrelafion function and the cyclic auto'
conjugate-correlation function respectively. As the notation implies, nfi,?) can be

regarded as the cyclic correlation function for the waveform pair r(t) and y(t)'. The
necessity of considering the conjugate correlation functions as well as the ordinary ones is
discussed later in this chapter in connection with cyclic spectral analysis. The cyclic
correlation functions are the Fourier coefficients of the AP correlation functions,

R&(r)a E,o{"( t *rlz)v( t -rlz)"-tzrat 1,

-E,o {8,{"( t *rlz)y (t -, l2)-} e-iznat 1,

-Ero {R,ou ,ie-;znat y 
,

I -+oo

r 12+tt -rlz
R xyU ,r) e-;Znat 4s

R,oU,r):Ifr &?)ri2nat

and

(2.205)
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5.O Cyclic Spectral Analysis
A cyclic spectrum analyzer (CSA) can be loosely defined as a system designed to

measure some frequency weighted functional of the ideal (limit) cyclic spectrum of an
observed waveform. For erratic waveforms, exact evaluation of the cyclic spectrum or
functional thereof requires knowledge of the waveform over the infinite time interval. If
only a finite (or infinite but weighted) interval of the waveform is available, the CSA sys-
tem can be designed to produce an approximation of the desired quantity. In this
chapter, certain statistical relationships between the output of sliding-interval finite-time
CSA systems and the limit cyclic spectrum are derived and discussed and the design of
CSAs is studied.

In Section 5.1 the problem of estimating a frequency smoothed version of the ideal
cyclic spectrum is considered. It is noted that this problem is equivalent to estimating
the Fourier transform of a tapered version of the ideal cyclic correlation function.
Replacement of the ideal cyclic correlation function by its sliding-in-time finite time aver-
age estimate yields a single branch Q,,A.P (or BAP) system CSA. The prominent charac-
teristics of the kernel and its asymptotic behavior as averaging time increases are stu-
died. This leads to a definition of a general class of QAP (or BAP) cyclic spectrum
analyzers of the form

e-i 
Znao( 

e-i 
2n for 

O € d r, (t):/ I p (r -€, r), (€+riz)y ( €-r lz).

where /s and cI6 are the nominal spectral and cycle frequencies to which the analyzer is
tuned and the (rotated) kernel enaelope p(t,r) is a two dimensional low pass pulse cen-
tered at the origin with approximate widths At and tltf in the f and r dimensions,
respectively. The time resolution parameter Af and frequency resolution parameter a/
have the same significance and interpretation as in conventional spectral analysis. It is
shown that if p (t,r) has the appropriate asymptotic behavior, namely that its transform
satisfies

where

lim W(u)-{u)
A/ ---+0 \ I

then in the Iimit (5.1) ,pproaches an ideal spectrum analyzer, i.e.,

li- ,(t):/ w(u -fo)'s,i'( u)d,u ,
Af --+oo

(5.4)

(5.1)

(5.2)

(5.3)

(5-5)

and

lim lim z(t):S#(/o)
a/ --+0 AI +oo

This result is in essence equivalent to the Wiener relation since, as shown in Section 5.2,
the kernel envelopes associated with the time and frequency smoothing methods both
satisfy (5.2), (5.4), and (5.5). Section 5.1 ends with some observations regarding separ-
able kernels, symmetrized kernels, and the synthesis of equivalent systems operating on
the real-valued signal, its analytic version, and its compler< envelope.

Section 5.2 establishes the equivalence between time and frequency smoothing
methods of cyclic spectral analysis by showing that they both are of the general class
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6.0 Conclusions and Suggestions for Further Research

A complex-valued waveform z(t)is said to exhibit cyclostationarity if either of bhe

lag products e(f +rl2)x(t-rl2)' or r(l +rl2)x(t-rl2) contains sine wave components of
nonzero frequency for some value of r. The nonprobabilistic approach to time series
analysis proffered by Wiener [75] [77] can be generalized to deal with such waveforms.
The generalization consists of considering limit time averages of frequency-shifted lag
products, i.e., the cyclic correlation functions AEk) and Rfi, (r), in addition to the auto-
correlation function Rrr(r) central to Wiener's theory. By formulating the theory in this
way the conceptual difficulties of defining an appropriate probabilistic model of a cyclos-
tationary or almost cyclostationary random process are replaced by simpler concepts
involving time average statistics of a single finite.power waveform.

An extensive nonprobabilistic theory is developed. Spectral analysis concepts are
used to show that waveforms exhibiting cyclostationarity are precisely those waveforms
that exhibit spectral correlation in the following sense. The cyclic spectra (which are
F ourier transforms of the cyclic correlation functions) can be interpreted as frequency
densities of correlation between frequency-shifted versions of the waveform and its conju-
gate for some nonzero frequency shift. Cyclic spectrum input-output relationships for
linear-conjugate-linear almost periodic (LCLAP) systems and bilinear almost periodic
(BAP) systems are derived. The spectral correlation concept is found to be useful in con-
nection with the estimation of almost cyclostationary waveforms using LCLAP systems.

In light of the fundamental theorem of sine wave extraction, the nonprobabilistic
theory is analogous to the theory of almost cyclostationary random processes in the sense

that the sine wave extraction operation can be interpreted as probabilistic expectation
and the composite fraction-of-time density can be interpreted as a probability density
function. The analogy allows the extensive theory concerning Gaussian random processes

to be directly applied to define and characberize the properties of Gaussian almost cyclos-
tationary (GAC) waveforms using time average concepts. Similarly, Neyman-Pearson
detection theory leads to a time average interpretation of the likelihood ratio test for
detection of the presence of an almost cyclostationary waveform.

An appropriate characterization of a class of BAP system kernels leads to a unified
treatment of systems designed to measure the cyclic spectrum, i.e., cyclic spectrurn
analyzers. The GAC waveform model provides a useful characterization of the temporal
variance performance of these systems. The kernel characterization is also useful in
designing computationally efficient cyclic spectrum analyzers.

Suggested Topics for Further Research

Cyclostationary waveforms are of
application areas listed in Section 1.0.
interest to the author.

continuing interest in connection with all the
The focus here is on a few topics of particular

Signal estimation using LCLAP systems.

As the AM signal with spectrally overlappirrg AM interference example demon-
strates, use of an LCLAP sysbem rather than a linear time invariant filter can
dramatically improve performance if the signal of interest and interference are both
cyclostationary or almost cyclostationary. Previous work has not focussed on this
case. Further work is needed in order to characterize the class of problems for
which such large improvement in performance is obtainable.

b) In order to obtain the optimal LCLAP system performance indicated by the theory,
ihe LCLAP system oscillators are required to be in perfect synchronization with the
(second-order) periodicities present in the received and desired waveforms. Further
work is needed to determine the appropriate practical synchronization techniques

1)

a)
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and the performance sensitivity to imperfect synchronization.

c) Although adaptive periodicaliy time variant system implementations [21] [67] and
adaptive beamforming algorithms exploiLing cyclostationary concepts are currently
under study by others, many avenues of investigation remain open. For example,
adaptation approaches that exploit cyclostationary signal properties or exploit the
constant envelope property of frequency and phase modulated signals have the
potential for eliminating the need for a lraining signal known at the receiver. The
implications of these approaches in connection with LCLAP systems have not been

fully explored.

d) Practical constraints can limit the number of LCLAP system branches that can be

used. A practical approach for determining an appropriate set of oscillator frequen-
cies is needed. This problem is apparently difficuit if both the desired and interfer-
ing signals are almost cyclostationary.

2) Non-Gaussian waveforms.

Many modulation schemes produce signals thab are cyclostationary but inherently
non-Gaussian, e.g., frequency modulation, binary pulse amplitude modulation,
BPSK, and QPSK. Further rvork mighi yield simple exact expressions for the
CFOTDs and characteristic functions for these signals. In order to evaluate the
variance performance of cyclic spectrum analyzers driven by such signals, an expres-

sion for the sine wave components of a fourth-order product waveform'are needed

as indicated in (4.132). Preliminary resulbs for binary PAM suggest that for large
atA/ the output variance is bounded from above by the variance due to a GAC
waveform with the same cyclic spectra.

3) Discrete time waveforms.

a) Definitions of the CFOTD, characteristic function, and sine wave extraction opera-
tor for discrete time waveforms are analogous to the continuous-time definitions.
The synchronized averaging identity (2.158) can be applied (in a manner similar to
the approach used in Appendix G) in order to determine the relationships between
the discrete-time and corresponding confinuous-time definitions. The relationships
are complicated by aliasing effects rvhich could be clarified by further study.

b) A catalog of discrete time BAP system kernels analogous to those in Appendix C' 
would be useful. New issues arise in connection with aliasing effects.

c) A comprehensive treatment of discrete time cyclic spectrum analyzers paralleling' Chapter Five (in addition to the results reported in [39]) is needed for a thorough
understanding of digital implementations. Aliasing effects and multirate processing

issues, although addressed somewhat in Sections 5.5 and 5.6, need further attention
for fully-digital implementations.

4) Cyclic spectrum analyzer design.

a) The cyclic spectrum analyzer is the basic tool for analyzing cyclostationary data.' Cyclic spectium measurements are an integral part of certain applications such as

LCLAP system identification, signal detection, and signal classification. For exam-
ple, one approach for constructing a general purpose single or multicycle cyclosta-
iiorrr.y sijnal detector is first to estimate the cyciic spectrum over the entire (.fo,oo)

plane with a frequency resolution small enough to resolve all features of interest.
Then additional frequency smoothing can be performed using smoothing functions
matched to the cyclic specbrum feabures of signals of interest. Computation can be

reduced (at the cost of reduced probability of detectior) by focusing on only those

cycle frequencies showing promising peaks in the initial cyclic spectrum estimate.
The potential applications warrant a continued search for more economical means

of computing cyclic spectrum estimabes, particularly for cases requiring complete
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coverage of the (/0,00) plane.

b) Digital implementation of the DIF - output transformer CSA discussed in Section
5.6 presents several design problems that need further study. For example, cycle
aliasing can result in false indications of spectral correlation at a particular cycle
frequency. As explained in Sections 5.5 and 5.6, the effect is lessened by selecting
the channelizer subsampling rate to be higher than a value that depends on the size
of the restricted cycle frequency band and on the input filter bandwidth taking into
account shoulders and sidelobes. Since most computational cost is incurred subss.
quent to channelization and since this cost increases with the subsampling rate, it is
imperative (with respect to computational cost) that the subsampling rate be as
close as possible to its theoretical minimum (given by (5.511) for the overlapped
channel case of Section 5.6.5). Thus, high quality channelization (in the sense of
high out-of-band attenuation) can reduce overall computational cost.

c) The DIF - output transformer structure can be modified to form a high cycle.
frequency-resolution CSA by using a high resolution specbral analysis technique in
place of the output Fourier transformer.
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Appendix A. Bilinear and Quadratic Form Identities
The emphasis in this appendix is on results that ease the conversion between real-

and complex-valued representations of bilinear and quadratic forms. A complex-valued
vector, x, can be represented in terms of its real and imaginary parts in several ways, for
example,

: xr*LXi 
1

(A.1)

where

the dimension of x
Re{x}

Im{x}

(A.2)

Another useful form is the
this dissertation as the real

real and imaginary parts, referred to in

L:

real-valued vector
ertended uector for

Ilx'
-atx-l

L*;

twice that of x.
compler ertended

1a +|.*.vZ [x

A t h irl-x: \E Lr -trl* ,

Nis
AX,:
AXi:

of
x.

Note that the dimension of x IS

extended vector is related to the

yielding the useful identity,

where

The first identity states
uector ,

that

(A.3)

the real

(A.4)

via a unitary linear transformation. Note that * can be constructed as follows,

x:Ix, +?Ixd

x'-Ix r iT*;

and superscript H denotes the conj ugate transpose.
complex valued, of dimension twice that of x, and has
is verified by observing that its inverse exists,

*-JHx ,

;A +L-J,I]

(A.5)

(A.6)

The transformation matrix J is

full rank. That J is nonsingular



IIH-+l-i ,l]|I jl] -r ,
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(A.7)

(A.8)

thus

3--t :JH 
;

J is unitary. The inverse transformation exists,

x:J* . (A.9)

Identities (A.5) and (A.9) yield a simple relationship between bilinear forms involving
{x,y} and {*,i}. Consider the real variable bilinear form,

7-arB.y, (A.10)

where B is an arbitrary complex-valued matrix but f and f are real valued as defined by
(A.3). Substitution of x:J* and y:J;; yields

z+H Ai - *'N g' - *r N'g :*HA' L g' 
1

(A.11)

where

A:JflBJ ,

A,:JTBJ* 
1

A, ' -JTBJ ,

.A,''-JHBJ*.

(A. L2)

The relationship between A and B is invertible, i.e.,

B:JAJfr (A.13)

A and B have identical rank and

detA:detJffBJ : detJH detB detJ (A.14)

:detB

Note that

(A.1b)

It follows that if B is symmetric then A is Hermitian if and only if B is real valued.

If the original vector, x, is real valued the above results remain valid. However,
(A.10) reduces l,o z:xTB,11y and (A.11) reduces to z:2xT At1y, where y'.rr:B1,/2

Suppose the bilinear form is written in terms of the matrix inverse, C-1:8, i.e.,

2-jr c-1, (A.16)

Then from (A.11) and (A.12),

where

z*nD-Lg , (A. L7)



Consider the subclass of symmetric bilinear forms, i.e., forms such that

7:yrpy: r?Bx (A.20)

Without loss of generality, B can be assumed to be symmetric since given any B' satisfy-
ing (A.20), there exists an appropriate symmetric B satisfying (A.20),

z-rrBt y (A.21)

D-I_JHC-IJ )

D:JHCJ .

-f,"?B' v++vrr.'rv

-l*?B'y+l*rB' 'yzJz

-rt i(t'+B' '),

-f 'gy ,

n-|(B'+B'') : B? .
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(A.18)

(A.1e)

(A.22)

(A.23)

where

Althorrgh B is symmetric, generally A+Ar and A#/,H. The
gives A a special structure. Partition A and B into four square

A- h" 1"I B- [:" B"I
= 
Lo,, Azzl Lr, srrl '

Clearly all quadratic forms,

z_v?B* *HA* (A.24)

satisfy (A.20) and can be considered symmetric. In what follows B is assumed complex
valued and symmetric. The complex vector form of (A.20) is given by (A.r1) with

A:JffBJ . (A.25)

(A.26)

A, :i(", *Bz z-i(Brr-Brr) )

;*rz:i(, r r -B zz* i(Brz*Br, ) )

l,.zt:i(" r, -Bz z- i(Brz*Br, ))

Azz:*(t,-FB zz*i (Brr-Brr)) .

symmetry of B, however,
submatrices,

E*p ansion of (A.25) yields

(A.27)



Sy-metry of B i*plies
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(A.28)

Brr-Bf,
Bzz:B$

Brz-Bf, .

|.A, A*I
A- 

Lo, A,1l '

Note that Au is not necessarily symmetric or Hermit

Brz:Br,,,l

The submatrices of A become

Arr:|(Br r+B22- i (B1r-gril)

l^rr:I(Bl 
1 -822+, (B 12+B,!) )

Arr:|(Brr-B22-i(Brz+Bril) (A'2e)

A*z:|(B,+Brr+ f (Brr-BrT))

The structure of A is thus characterized by

Lrt:A{z

Atz:A{2, (A.Bo)

Arr:Ar!, t

(A.31)

ian. Consider the special case of

(A.32)

which holds in general if B is a two-by-two matrix. Then, in addition to the above
structure,

{rr:Ar1 . (A.33)

Suppose the result z is constrained to be real valued. Then B is necessarily real valued
and therefore

Arr:A LLH

Arl-Arr'
Arz - Arr' - A{z ,

(A.34)

from which

(A.35)

(A.36)

[A,, A,,
A- 

Lo,r' A,,'

A:AH ,



was previously discussed following (A.15). If,

A1 :Azz:Brr*Bzz
in addition, Brz-BS

is real valued,
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two-by-two

(A.37)

(A.43)

(A.43) that

(A.44)

orBis

Arr

L,,,
Arrl
lrrl (A.38)

(A.3e)

complex vector form,

(A.40)

(1,.+z)

Consider the integral bilinear form

,:{J*t qr B(" ,, )y( u)d,ud,u

Identity (A.11) applied to the integrand gives the corresponding

- IJ*(u ) 
t a( u tu)t( u)' d,ud,u ,

where

A(u,u):;?B(u,u)J' ' (A'41)

Consider the subclass of symmetric bilinear forms, i.e., forms that do not depend on the
order of the inputs,

,: [/*t qr B(, ,, )y( u)dud,u 
1

Without loss of generality, B

since given any B' satisfyirg
produces an identical outputl

,:l/Yt qr B(, ,, )*( u)dud,u

can be assumed to satisfy

B(",r):B(o,qr ,

(A.42), there exists an appropriate B satisfyi.rg

,:l/*t qr B'(u p)y( a)duda

:+ I [*(, ) 
t B' (u ,, )v( u) d,ud,u *+ t [Ytu)r B'

:+ I [*(, )'B' (u ,, )r( u) dud,u ** t/ot u)r B'

: [ {*(r ) 's( u ta)I(r ) d,ud,u ,

(u ,, )*( u)dudu

(u,u)r v@)dudu

-ll=t qr i(r' (u ,u )+B' (, ,u)')y( u) d,udu

where

B(" ,, ):B (o ,u)' - *(r, (u ,u )+B, (, ,4r )

(A.+s)



Clearly all quadratic forms,
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(A.46)

(A.47)

,: I/*t qr B(u ,, )*( u)dud,u ,

,: I/,t(" )'e( u tu)*(, )' d,udu ,

satisfy (A.42) and can be considered symmetric. The symmetry condition on B imposes
a particular structure on A. The symmetry condition on B implies

811(u , u ):81 ,(o ,u)'
Bzz(u,a):822(a ,u)r (A.48)

Brz(r,u):B21(o,u )? .

The submatrices of A are thus given by

Arr(r,r):i(Brr(u,o)+B22(u,u)+r(81 2(u,o)_P,12(r,")')) (A.49)

Atz(u,r):i(Br, (u,u)-822(u ,u)-i (B1 2(u ,u)+Bp(r," )t ))

Azr(u,r):i(Br, (u,a)-822(u ,u)+e (B1 2(u,v)+Bp(r," )t ))

Lzz(u,, ):i(Brr(u ,u )+B22(z ,u)-r (B1 2(u,u)-812(r," )')).

The structure of A is characte

(A.50)

A(

The integral is then expanded as

,:[ [x(u)'Arr(, ,u)y(a)'dud.a+[ {x(u)'e*r(" ,a)y{o)dudu (A.51)

+ [ [ *(")' Arr(u,a)y (u)' dud,t + [ [ flu)' &r( ", 
u )x( u )' d,u itv,

where (A.50) applies. Note that if y::<, the first and last terms of (A.51) are identical.

The effects of constraining the inputs or output to be real valued are described in
the following.

1) Real Input, Complex Output.
If x and y are real valued, the original equation (A.39) collapses to

,:{ {x(u)'Brr(u ,o)y(a)dudu , (A.52)

with
Brr(, ,a):B''gt,u)r

rized by

Arr( u tu):Lrr(u ,qr
Aor( u tu):Ar z(u ,qr
Azr( u tl):Ar, (, ,u) 

t 
,

laor( u,a) Arr( u ,u) I
u t0): 

L& t(u,u) Arr( u ,u)r l



2) Complex Input, Real Outpur.
If z is constrained to be real valued for arbitrary x and y then
sarily real valued. In this case (A.50) holds as well as (from (A

Arr (u ,u ):A rr(u,, )' : Ar ,(, ,qH )

Arr( u tu ):Ar, (u ,u ). : Ar z(u ,qr )

[Ar, (u ,u) Arr( u,u) I
A(" 

'u ): Lorr( u ,u)* A1r(, ,, )' I '
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it follorvs that B is neces-

.4e)),

(A.53)

(A.54)

The first and fourth terms of (A.sa) are conjugates of one another, as are the second and
third terms. Thus

z:2Rei { !"1")'Arr(,, ,u)y(o)'dudol' (A.55)

+2Re{ [ I"@)tArr(r,u)y(a)d,ud.a l,

where Arr(",u ):A11(u,u )H and 7^rr(u ,u)-/r12(t ,u)r . Note that

([ [*(")"Arr(",r)y(r)' duda)':[ [y(u)rArr(u,u)x{a)' dud,., ; (A.56)

therefore in the special case of y:x, equation (,{.56) is real valued and the real part
operation of the first term in (A.55) is unnecessary.

3) Real Input, Real Output.
If x and y are real valued and z is constrained to be real valued then the original equa-

tion (A.39) collapses to

,:[ [x(")tBr,.(, ,u)y(v)d.uda , (A.57)

with 811(u,u):811(o,u )? real valued.

The integral expansion is then

,: J [*fu)tArr(r,a)y(a)' dudu + [ fx(u)tA,.r(r,a)y(o)dud.a

+ [ [ *(")' Arr(u,, )'y(, )' dudu + [ ! x( u )EArr( u,u)' y(a) dudu.
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Appendix B. The Complex Variable Forrn of the Gaussian CFOTD and Fourth-Order
Moment Forrnula

An extensive discussion of complex-valued Gaussian random processes and the com-
plex Gaussian probability density function is given in [61] and complex Gaussian moment
formulas are derived in [61], [02], and [00]. However, attention in [61] and elsewhere in
the literature is focussed on waveforms with zero conjugate correlation, that is, on
complex-valued waveforms satisfying

fi{r,(t+rl2)x(t-r121;:0 for all r (B.1)

Prior theory based on (B.1) is inadequate for dealing with certain types of purely cyclos-
tationary and almost cyclostationary signals that have nonzero conjugate correlation,
e.g., frequency shifted PAM.

Cornplex Variable Forrn of The Gaussia.n CFOTD
The complex variable form of the Gaussian density derived in the following holds

for any signal (or vector of signals) rvhose real and imaginary parts are jointly Gaussian
almost cyclostationary. The analysis is based solely on the Gaussian form of the compo-
site fraction-of-time density (CFOTD) and therefore applies to the Gaussian probability
density as well.

Let x(t) be the vector of complex waveforms of interest and define the extended
vectors x(t) and *(t) as in Appendix A. Assume that the CFOTD for i(t) is of Gaus-
sian form,

ft161('):(zzr)-N' tz lKi(') l-'/'u"p[-](v-E(t))?rqt)-l(v-p(r))1, (B'2)

where

Nt :2N,
N is the dimension of x(t) ,

P.G)A E, {x(r)} ,

and Ko(f )4 a, {(*(t )-P(f )Xf(f )-F(,)) 
? 

}

If K*-(f ) is singular, which occurs for example if any element of x(t) is real valued, Equa-
tion (8.2) is only a formal representation of the density. The actual density, which con-
tains impulse fences, can be found by Fourier transforming the characteristic function of
(8.24).

The complex variable form of the density is just a rewriting of the above in terms
of the complex-valued vector,

iA rHv-+ f"'*1"'YZ Lv'-tYi

where lA ':I 
r rln#L-,, orl 1

3'-t:JH ,
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The complex variable form of the density is thus defined by

/*t,t(t)A /*,,,(r+1 . (B.3)

Note that averages can be computed using either form of the density function,

Io$)fx1t1$)dn:l o(J+)/*(,)(f)d+ , (B'4)

where diA d'r:duyduyd,u2rdu2; ' ' ' d,aprdu7,6. Equations (A.10) through (A.r3) are
applicable to the exponent of (B.2);

(r-F(r))?KJ,)-1(v-E(r)):(+-p(r))HKi(,)-'(r-i(r)) , (B.5)

where

n(f )A JH74t1:s,{*(,)} , (8.6)

[.,,,-Alano v- I

Lr;

Ki(t)4 J'Ko(f )J

-Et{J' (*( r )-F( r ))(*( t)- r,(r )) 
r r }

-Et{(*(r)-r,(r))(*(f )-p( f ))" I .

The determinant in (8.2) is evaluated as follows:

lr=(r) l- lrKo( t)ru I

- IJTIJK*(r) |

-lrrq(f)l
- lru(r) I

(B.e)

Incorporating (8.5) and (B.9) into (B.2) yields

/o1,y(n):(zn)-N' lz lK*(t) l-'/'"*p[-]t+-A{t))"K*(,)-1(+-F(r))l (B'10)

(B-7)

(8.8)

Note the factor of one half present in K*( f ),

. [*-*( ,) K**.(r)
Ko( t):; 

I 
r*.*(t ) K*.*.(, )

L

(B.11)

where

K*vA E1{(x-y,)$_l,ro)H ) (8.12)

In the important special case where the submatrices,

r(**.(t)a E1{(x(t)-*(t))(x(t)-x(t))t }:o (B'13)



and

K*.*(f ):o )

are zero the complex version of the density can be written in
uA u, *r r;. Eqration (B.10) simplifies to

f*(,r(r)a &try(+) when K**.(f )-K*.*(f ):o 1

:n.-N IK**( , ) | 
-'.rp[-(" -p(r ))'K**(, )-'(u-p( r ))] ,

where

tt(t)A s,t*(f )I ,

K**(r )a E,',*(t )*(r)" )

-Et{r,,( t)r,,(t) n,u(, ) ) ,

Equation (8.16) is the complex variable form of the Gaussian density commonly encoun-
tered in the literature [61], [72].

The moment generating function for a vector of real-valued waveforms can be
defined by

zrzflw)A (8.1e)

where w is real valued and independent of v.
app arent:

The moment generation property is

6u ,rrJ*) l*:o -{14, i;ufx(,)(v) dn (8.20)
dw, ' ' ' du),11 tM

I fot,1(v) ,*'i d,v ,
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(8.14)

berms of bhe subvector

(8.15)

(8.16)

(B.12)

(8.18)

elements of

(8.21)

x are jointly

(8.22)

In particular, w:i*,

(8.23)

(8.24)

for the corresponding

where the indices ii , i:L, ' ' ' ,M need not be distinct. If the
Gaussian then

**(*) :u*p ti*' rJ t )w+* r l,@l

It can be shown [61] that (8.22) holds even if w is complex valued.
where u is real valued, yields the characteristic function

do(r)a / f*(t)(v) ,do'o d,u ,

-"xpt-i"'*o(r)u*e ur t4 .

Consider the proposed definition of a moment generating function
comp lex-valued waveforms,



of independent real numbers,
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(B.25)

then the momen[ genera-If s is constrained to be a vecbor
tion property is apparen[:

dM

;sr r il s;u

nzo(s)+ / f*(t)(+) ,"n ,t:,

-.t(r) I .:o --f ci, o,* folr 1(+)d 
+ (8.26)

(8.27)

(8.28)

(8.2e)

valued. In the case of a
Thus, using (8.22) with

(8.30)

(B.31)

(B.32)

(8.33)

(B.34)

(8.35)

(8.36)

(8.37)

:Et li;, (t)i,,(t) rk(f )) ,

where the indices, ii, i:1, ,M, need not be distinct. Since the vector *(f ) contains
the various waveforms and their conjugates as separate elements, moments of the form
(B.27)_include all possible products of the waveforms and their conjugates , e.g., rl , rf l,
x1x2x3rn, etc. Definition (B.25) can be expressed in terms of the real extended vectors,

?n *(r):J fo(,1(v) e "r,v dn

-m*(J " r)

If s is constrained to be real valued, J*s is necessarily complex
Gaussian density, (8.22) holds even for complex-valued \M.

w-J*s to evaluabe (n.zo; yields

rn*(.)-.rot;rr JH K=( ,)J's+sr JHl,(t)l ,

-eXp t+"'K**.(r )"*s 
? p(r )] ,

where

Koo.(, ) 
n E,i*(f )*(f )' ) .

The identity, JH K*(, )J'-Koo.(r ), is established as follows.

J'Ko(, )J' :JH JKo(r )lHl. ,

:Ko(')P 
1

where

[-,1
II

P4 JTJ 1[r:t 
Lr

:[i

-iI
iT ,I]

:P-1 
,
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entries in the partitionedand laetf l:t. Post mulbiplication by P
matrix,

interchanges column

J'Ko( ,)J'

:Et{*(f )*(f )' } ,

:Koo.(r) :K*(r)p

Comparison of (8.3f) wiih (8.10) reveals that the correlation matrix
moment generating function is not identical to the correlation matrix of
tion, the two matrices being related by an interchange of columns
(8.39). Note that K*(t) is Hermitian while K**.(f ) is symmetric.

The characteristic function defined by (3.134) becomes

d*(")A,[[11y(f)ed"u di,

which leads by an argument identical to the above to

0 ob):exp t-+"' Koo.( r )r+? rr fr)

f*0,, *0,, I

L*o,, 
*0,, 

1 
'

I [^--.,r, r(**(r)
u 

Lra_.*.(f 
) K*.*( f )

lf;-(r)* (t)' +-( r)* (t)'
Et 

1l+"(r).*(r)' -r"rr)'*( t)' lI

(8.38)

(8.3e)

appearing in the
the density func-
as prescribed by

(B.40)

(B.+r)
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Moment Formulas for Real Valued Gaussiarr Waveforms

The well known fourth-order moment formula for zero-mean jointly Gaussian ran-
dom variables can be expressed by the integrai identity,

(8.42)

where u and v are four-dimensional vecbors of real-valued variables,

/(')A (2o)-' lK l-'/'"*p(-|,r?r-',,;,

and

(8.+s)

/(,) d u

+/ uLu3l(r) du' Irruaf (v)dv +/ urunl(r)d, ' Irzuzl(") du,

K-/ tl-[",

I t t I ui ux f*(,1(r)du -Et

I I//, f*(tr(r) d,u-Et {r(f )} - 0

is nonsingular and symmetric. The relationship (B. 42) and
referred to as Isserlis's (fourth-moment) formula. Srrppose
fraction-of-time density of the

(8.44)

its equivalent forms are
that the cyclostationary

waveform

(8.45)

real-valued vector
*(f )A [rr( t),rz(t),rr(t),xq(t))', i, of the form of (B.43), i...,

f*(,r(r) -f(r) ,

where K:K(f ) is almost periodic in f . The waveforms {q(t)}are then jointly Gaussian
almost cyclostationary and contain no first-order periodicity. If the elements of x(t) are

not linearly independent then K is singular and a density of the form (B.43) does not
exist. Nevertheless, (B.42) is valid if Gaussian densities involving impulse fences are

allowed. Thus the results of this section remain valid for linearly dependent waveforms.
It follows from the definition of the CFOTD and the sine rvave extraction operator that

I I I I uLu zusu +f*1tr(r) d,u_-Et {rr( t)*z(l-)rz!)rn( f )} ,

Iri(t)*x( f))

(B.46)

(8.47)

(B.+s)

(B.ao)

K(f ):E,t*(f )*(, )t ]. ,

Relationship (8.42) can thus be expressed

E,{zr( t)rr(t)rz!)ro(t) } -Ettrr( t)rr(t)i
*Et Irr( t)rr(r )]
*Et{rr( t)ro( t))

E, 'r,rt!)* n(f ))
Et',rr(t)*n(t))
Et {rz(t)rr( t )}

(8.50)

If the waveforms are jointly Gaussian almost cyclostationary but have nonzero
means, they possess a CFOTD of the form
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/*1r('):(z'r1-'lK(,) l-'l'""p[-](u-x(r))?x(r)-l(u-i(,))1, (B'51)

where

i(t14 E,{x(t)} ' (B'52)

K(f )a s, {(*(f )-i(f ))(*(r)-i(r))'f , (B.ss)

and the cForD for (x(f)-i(t)) is of form (8.43), and relationship (B.42) becomes

E,{(rr(t)-tr(r)) (xr(t)-ir(t)) (,.(r)-rr(r)) (u4(,)-;4(,))} (B.54)

:8, {( r r( r ) - i t(t ))(r r(t ) -z r(t)) E, {(x r(t ) -a r( r ) ) ( c n( r ) -r n( f ) ) }

+81{(zr(r)-ar?\@r(t)-"r(t))4{(,r(r)-r3(,)Xr4(,)-;n(r))l (B.sb)

+ E, {(r r(t ) -i r(t ))(r r(t) -a rUD E, {(r r(t ) -t3(, ) X " 4( f ) -t n(, ) ) } .

Another well known property of the Gaussian density is the triple moment relation-
ship,

{ll[",u;u1l(u)du:0, (B.s6)

where /(u) is given by (B.43). The equivalent formula for waveforms is

u,{(x;(t)-e;(r)) (x;(t)-i;(r)) (,*(r)-rr(r))}:0 , (B.57)

E,{ r;(t)r,(t)ag) -x,(t)r,,(t)irg) (8.58)

i;(t )xi Q) re$) +4 $ ) z, (t)ir$)
r;$)\ (t) r1,( t ) +c, (t )ii U)nkU)

+ii\)ii $)r1,$) -i,(t)t, (t )ir (, )) : 0

Noting that E1{r"(t)a(t)}:i"(t)"(l) where a(f) is almost periodic in f, and adopting
the notation

R,iA E,{r,(t)r7(t)} , (B.se)

(8.58) becomes

E,{r;(t)r,(t)4$)}:R;ii*(t)+R,kii\)+RikiiU)-2i;(t)iiU)iku). (8.60)
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Moment Formulas for Complex Gaussian Waveforrns
Many of the key results in Chapters Four and Five of this dissertation are obtained

using the fourth-order moment relationship for complex-valued waveforms. Ii wiil be
shown that Isserlis's fourth-order moment formula (8.50) applies to complex as well as
real variables. The correctness of the formula is crucial. Therefore, two distinct deriva-
tions are offered; the first approach is direct and is based on the Isserlis formula for real-
valued waveforms while the second employs the complex moment generating function.
Let y(r)A lvr!),yr(t),yr{t),ynU)]? denoie a vector of iour complex-valued jointly Gaus-
sian almost cyclostationary waveforms lvith

E, 'rv(r ) )-o

Define, &s in Appendix A, the extended vectors

(B.o r)

^av-

_\ l.r, lY- 
Lr, l '

y, a R"{y} j

y;A It"{y}

on y imply that y consists of eight j ointly

E, 17} -EttJt}' - o .

bhus has bhe form

f ,('):( 2o)-n I r l-tt'"*p t-i, r K-\rl ,

{yr( t)y r(t)y s(t)yn( r )),

- JHy j
1[,

----: I .\/2 Ly
(8.62)

(8.63)

(8.64)

(B.65)

Gaussian real-valued

(8.66)

(8.67)

where

The assumptions
waveforms with

The CFOTD for v

where K is almost periodic in t. If the elements of f are not linearly independent then a
generalized version of (8.67) is assumed. It can be demonstrated that any subset of the
elements of f are necessarily jointly Gaussian almost cyclostationary. The quantity of
interest is

q4 Et (8.68)

(8.6e)

(8.70)

(8.7 L)

-Et {fu i *iyi X y', +;y'r)fu 5 *iyl X y'n +;yi)}

-Et {(y i y i +iyiy', +iy iy'z Xyl y'4+iy|yi+iyiyi

viv'zvIvL -viv'zvLvi

-yiyL -yiyl)i

-Et { viv'zv|vl+i viv'rviv'4 +i
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+i viv'zv 5v i -v \v'zy Ly I - yiy'zy ly'o - i
+i v iv'zv 5v i -s iyLviy i -y iy'zy 5y L - i

-viv'zvlvi -i viv'zvivi -i viv'zv 5vL

Each term in the sum of (B.71) is a fourth-order moment of real-valued Gaussian
waveforms and can be evaluated using Isserlis's formula, (8.50). To expedite this process
the following notation is adopted,

v iv'zv iyi
v iv'zvLv'n

*viv'zvLvL I

x;SLe,lyfyfj,where p:r or i, {t:r or i
Expanding (8.71) using (B.50) for each term in the sum yields

q : (KiLK l'a * Kl\K i'a + K i\K iL )

+ ; ( K iLK i 4 + K ii' K ;'n + K i',4K i\ )

+ i ( K iiK 5; 4 + K i'rK ii n + K i\ K ii )

-( K iLK'i n + K ii, K ;in + x ii n x ;, 1

+ ; (KizK 5l + K{sK 1',4 + K i 4K 

"L 

)

1, K irK i n + x'lrK l'n + K'{4K'* )

-(K'{zK t n + K'{ rK i; n + X i n 
f ;i 1

; 1x'irx 1 n + x irx ;i, + x'i ntr ;, 1

+; (KizKi\ +Ki\K'{4 +Kil4Kh)
-(K iLK i n + K hK'{4 + K iiK * )

1 K i"K i n + K i\K',; 4 + X TinX ;, 1

; 1x irx g n + x i;rx { n + K i\K'h )
-6irrc 

"\ 

+ K ft K',{ 4 + K i 4K'.zl )

; 
1 
x'irx'i o + K hK'; 4 + K inx f, 1

; 
1 
x'irx tn + K fiK t 4 + x i nx'i, 1

r@irrc'jn +x'irx;n +KinKi, ) .

The terms are reordered and collected as follows. The first column produces,

q r (K iL - K i, )(K fl'.n - K ! n ) + i (K i',z - K',j, )(K ! 4 + K',il )
+ i (K iiz + K ir)(Ki'n - K'in) - 6 i, - K i, )6 t4 + K i4),

-[(K i', -K{r) +, (Ki', + K'{z)] t(K|'n - Ktn) + ; (K['n +K'{)),

(8.7 2)

(8.7 3)

(8.74)

(8.7 5)

(8.76)

-Et {vivl +, ( yiy', +y\y'r)) E, {y|yi +i ( y |y'n +yLyl )), (B -77)

:&{vrvz}8,{vssr}. (8.78)

Columns two and three can be reordered to appear identical to column one except for

-yLyL-yiyL
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subscript ordering. Thus, immediately,

8z:Et'rY*i4tlrYzYnl , (B'79)

8t:ErtrYflEiEt\Yzatt , (8.80)

and therefore,

Et{vrvzvsy}:Er{vrvr}Erlrv*n}+Er\ytvs,t\Et{urun\+E,trvtvnlBtlvzvs}. (8.81)

If one or more of the elements of f is replaced by its conjugate, the resulting set of
rvaveforms remains jointly Gaussian. Therefore (8.81) holds with any of the waveforms
conjugated throughout. In particular,

(B.82)

E,'rvrviviv+\:Et{vrvi\E,{srvi'l'*Et\vrvi IE,Ivrvi l'+Et\vrsn,\E,tvrvr\'.

The above result indirectly establishes an integral.identitl' for complex variables that is

analogous to (B.a2). The change of variables ri:J'u in (8.67) leads to the complex vari-
able form of the CFOTD,

$(t):(zzr)-N llt l-1/2e*p1-!tEA-lt1 , (B.s3)

where

K4q{iirI} , (8.84)

and N:4 is the dimension of y. Then the integral form of (8.81) is

farararanlg(r.)af. (8.85)

where

d frA di tdu zduzdi +du sdu odu z di a (B.86)

The alternative derivation of the complex fourth-order moment formula is based on

the moment generating function and its property (8.27). The complex form of the
moment generating function has been previously derived; from (B.31),

*rt y:"+"'K-'(!)s . (8.87)

From (B.27),

oamo$) 
,

6ffid; l":o : E'{g*u)0*u)oeu)0qu)i ' (B'88)

-l a fiz&(,i)drr - { o zo +fv(+)d+

+ I il ra3&(ri)dfr . I o zo q,f{+)d+

+1afi46(fi)dfr - {ozosf{+)d+ ,
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which, if y (, ) has dimension N:4 and the indices are selected according to
fr:1, n:6, P :7 , g :4, becomes

: 
Ir,',vlt)vz!)'vr(t)'vn(t)) . (B.8e)

For notational convenience, define A4Kno.(r)with \o the ztl column of A and \-o the
element in the *th ,o* and the ntn column. Using A?:A, it can be shown that

d

,;-r("):\fl"-e(") (B.eo)

Higher order derivatives follorv,

it2

ffi*o(s):he?s\f3+\oolme(s) (B'eI)

and

a3

E;k,;-r("):h,I"xrrsxo?s+x,o\1s+\ro\fs+\", Xo?slrne(s)' (B'92)

Setting s:O in (B.92) yields the result that the sine wave components of triple products
of zero mean Gaussian waveforms are zero, i.e.,

4!,0^U)ir1r,)i.o(r)):o , (B.e3)

for any choice of n,p and g. Differentiating (B.92) yields,

6* rrTr?.7.7 . .T.T

w;d'=" -e("):[\Jsxf"x'r"x'""*\-o \1"\"" (B'e4)

+\,0 \ f s\r"s+\r, \ fls\,,Is+\,, trfls\o"s

+\ -e \ Js\ ot" +\ -, X J"Xrt"

*\-o \ro *\-, \oo +\-o \ro ]m9(s).

Setting s:0 yields,

4\0^U)A"U)0rU)0.U)):\-o \ro *\-, \oo +\-o \o, (B'95)

The correlation matrix has the form,

A -r( ^ ^.(vv\ (8.e6)

(8.e7)

A:1
2

, fr(t) I

#L;i,;'ltv( t)'v
Krrri "' K'r',
K r roo ......

uzuz
aaa

aaa

:..... .:. 
t*,

lltUt

t): Et{ (t)')+

:"'.1
'r*, 

I

;r: )

)



Suppose that y (t ) h*
m :1, n -,6, p --7 , Q:4.

\*,

and that the indices
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are selected according todimension Ar-4
Then
r1:\ro : 

iKrro,

\ ro 
:\z+ -

\ *, :\tz - f,Kr ro,

\-o:\r+

\ ro :\oz

LK..-
Z AtUt

1 r.rt
Tnus! t

*uo,o,

(8.e8)

(B.ee)

(B.1oo)

2 lzUt

1 r..: -n .
Z 9tlt

-1K,Z !zlz
I trt:-1!\.
Z AzAe

Substituting these in (B.95) and recalling (B.89) yields the desired result rvhich is

equivalent to (8.82),

E, {v {t)v z(t)'v r( t)' v4( r ) }:Kr,v,( t)Ko,r.( r ). * Ksro,(t)Ko,u,U)'

* Kurri ( t)Krrr,. (f ).

If the elements of y are jointly Gaussian but contain first-order periodicity then the
vector y-f meets the requirements above. Thus

g u E,',,(v rv ) fu r-l ,) (v, -l ,) fu n-v )I

- Et {(v rvrXv z-v z)} E, {( v rvaXv n-v n))

*Et [(v'-i )(vr-vr)] E, {(! z-i z)fu n-v n)}

*Ett,(v L-irXv n-l )l E, {(v ,-v z)fur-fir)}

Third-order moments of zero mean complex-valued waveforms are easily shown to
decompose into a linear combination of third-order moments of their real and imaginary
parts which, according to (B.57), are zero. Therefore,

E,\,(v;-v;) fui -vi) fuo-vr)):o (B.102)

(B.101)

for any jointly Gausstan
tity

waveforms , A;,Ai , and Ak. E*pansion of (8.L02) yields the iden-

,\:Ettra;gi t\yr+E,try;yt lgi*Er{yiyx)y;-2y;yiltr- (B'103)E,{e;a1ax



262

These third-order results are helpful in establishing a useful alternative form of (B.101).
Note that in light of (B.102),

Q:Et{(vr-vr) fur-lr) fut-it)y nl (8.104)

:E t{y , a za ta +-y fl zy ty t-!/ ,i ,a * +*y ,y za zg +

-l tu zg * E*l fl zl * +*y ,l ziy +-y rl zy * +\

-Et{y, g zg ta +-y ru za +i t-a ta ty qi z-yy ta qy ,\

*^luy zi t*^izr.i ri:*^ia+ y ,y z-v ti zy zy + )

(B.105)

where the notatior., ^iixAEr{yiyx} has been introduced. Use of (B.103) to evaluate the
third-order moments in (B.104) leads to

Q :Et {y ry ry ry n}-lnl zl +-inl zy *-'it+y zi t (8.106)

-lztl tl E-lzti ti s-'iztl fi z*51:it zl zl *

On the other hand, expansion of the right side of (8.101) leads to

Q:1o1z+l^la1z+flulzt-zrzi zl t-lz+l rl z (8.107)

-1tti z! +-1zt! tl e-hfi zl r'iztl fi ++31 fi zl fi + .

Equating (8.106) with (8.107) and canceling terms yields the desired result,

E,{vrvzvsyn}:E,{vrvr} E,{ysynt\ * Et{yryz} E,',yryn,\ (8.108)

*Et{y, y +} E, {re 
ze s} - 2i * zu si +
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others I

Appendix C. A List of Bilinear Almost Periodic

The systems discussed in this section have
see for example [39].

1) Filter- Correlator Structure.

, (t)

v(,)

System Kernels
been analyzed in depth by many

,(t)

Figure C.1. The Filter-Correlator Structure.

Many of the QAP systems of interest are special cases of the filter-correlator struc-
ture shown in Figure C.1 and described by

z(t):[ Jc(u)z(w_.u)d.u Ia1r1'y1r-o)'d,t e(t_w\dw ,-;znoot , (C.1)

where, for the time being,.(f), d(t), and e(t) are arbitrary complex valued impulse
response functions. The structure is capable of approximating ideal spectrum analysis
and signal detection kernels and is of a form well suited to implementation with scalar
input-output electronic devices. The structure becomes BTI if os is set equal to zero.

Manipulating (C.1) into standard form yields

,(t):/ [ *(u ,r)r(t -r)v ( t -u)' dudue-iznaot ,

m(u,r):{ c(u-w)d(l)-u)u( w)dw,

(c.2)

(c.3)

(c.4)

(c.5)

(c-6)

M(a,b):C (o)D (b)' E (o -b) ,

rh ({,o): I c (u -o lz)d (u +o f 2)' e ({-u) du,

Iil (a ,t):C (b +a l2)D (t -o lz)' O (o1

The output sine wave components are then given by (4.109) and (+.tt0),

,(t):Tzfi"i2trut , (c.7)



Special cases of interest are readily obtained from the above.

Product Device.

Let c (t):d (t)-r(t )-,{ r), and,'0-0. Then

, (t):* (t)y ( t ).

m (u ,u )-,{ u )6(u )

rh ((,o)-{ €-" l2)d( €+o lz1

M (a ,b ):t

{,t 1a,b):t

zlo-R&(o)

Correlator.

Let c (t):d (t )-6(t ).

e-i 
Znaot

m(u,0):, (+),{, -u)

fr ((,o) -, ((),{")

M (a ,b):E (o -b)

[,r 1a ,b):E (o )

Z l, - E( /, +.,,0 ) R :r* "' ( o )
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(c.8)

(c.e)

(C.10)

(c.11)

(C. Lz)

(c.13)

(C. L4)

(c.15)

(c.16)

(c. L7)

(c.18)

(C.1e)

(c.20)

(C.zr)

z(t):/ , (t -u), ( *)y (, )* d,w



Lag Product Cyclic Correlator.

Let c (t):{ t +r 12) and d(t):t\t -r lz).

z(t):[ e(t -u)r(u +r lz)y (u -rl2)' du 
"-i'n%'

m(u,0):s(+)0(, -u-r)

rh(€,o):, ({),{"-r)

M (a ,b):E {o _b) ein{o+o)r

ti,t 1a ,o):E (o)si2rbr

z l, :E (t t +., o;.R j*"'( t)

Cross Spectrum Analyzer.

Let c(t):d(t):o(t)ri2nlo', where a(f ) is low pass, and cro:6.

,(t):! [ a(u)r(w _.u)e;zntou d.u la(u)'y{* _.u1'e-izntoo 4u

, (*) d,we-i}n fo(u -u)

M (a ,b):,+ (o - fo)A (b -/o). E (o -b)

fr((,o) -{ a(w -o lz)o(w *ol2). e(i- w)d,we-i2nroo

{,r (a ,b):A (b +a 12- f o)A ( b -o 12- f o)' E (o)

p (€,o):/ a(* -o l2)o (* +o l2)'u ((-, )d*

P (o ,b):A (6 + o l2)A ( b -o l2)' E {o)

m(u tu):J o(u -.w)o (, -*)'

265

(c.22)

(c.23)

(c.24)

(c.25)

(c.26)

(c.27)

, (t -w) d* (C.28)

(c.2e)

(c.30)

(C.ar)

(c.32)

(c.33)

(c.34)

(c.35)zlr-E (d I a @ *r I z)A (o -r lz). s &(/o+ a)da



Cyclic Periodogranr..

Let

where o(t) and s(t)

-s;'u,fo)

c (u): o (" ) ,i 
Zn(fo+aol2)u

d (u):o (" ) ,iLn(fo-aof 
2)u
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(c.36)

(c.37)

(c.38)

(c.3e)

e_i 
2rao, 

(C.40)

(c.41)

(C.+z)

(c.43)

(C.++)

(C.+s)

(C.ao)

(c.47)

(C.aa)

(C.+o)

, (u)-{ 
" )

are low pass. AIso require "(t)
Ilo(")l'au-l

have unit energy,to

,(t):/ a(u)e
i 2n(ts+"0l2)" , (t -u) d,u { ,( , ) 

' ,-r Zn(f o-"0l2), y (t -u ). d,

rn(u fl):o(" ) o(a)' ,itao(u*u) r-'2rlo('-')

M (a ,b):A (o - fo-aol})A (b - f o+aof z)'

fr((,o) - a(€-" l2)o(€+" 12)' ,iZraoe e-iznfoo

thI (a ,b):A (b +a 12- f o-aolt)A ( b - o 12- f o+o:of 2).

p (€,o):o(€-" l2)o (€+" 121'

P (o ,b)-A(b +a l2)A (D - o l2)'

Zly: {,a, (a * 1.t I z)A (o -p I z)' S {n*"0 (

Note that the cyclic periodogram is scaled to have unity g

a*fs)da

ain,

1
I



A Modified Cyclic Periodogra,rrr.

Srrppose the input filters of the
bandwidths and the local oscillator
That iu, let o'6 be arbitrary and

lf cvs is tuned to the filter

then P becomes

where o(t) and b(t) are low pass. The kernels of interest are

m (u fl):o(" ) b ('). eiZr 
f'u 

'-'2r 
f'u

M(a ,b):A(o - ft)B {b -f ,)'

rh {(,o!:s$-o lZ)b(€+o l2)' eizr(f'-f')C 
"-i 

r{J'+t')o

tit (a,o ):A (b +a I 2- l)B (b -a I 2- f2\'

If the rotated kernel envelope is taken relative to

- lifzlo: 
Z

and an arbitrary oro, then

p (€,o):o(€-o l2)b(€+o 12)' ,i,r(r'-rz-a)l

cyclic periodogram are allowed
frequency is unrelated to the filter

c (u):o(" ) ,i2r f'u

d(u):6 (, ) ,iZrf2u

e (u)-{, )

p (o,b):A fu *#)B( u - 
a - ft:fz*ao 

r'

center frequency difference, i.e.,

ao:fr-fz ,

P (o ,b):A( 6 + o l2)B (b -a l2).

267

to h ave different
center frequencies.

(c.50)

(c.51)

(c.52)

(c.53)

(c.54)

(c.55)

(c.56)

(c.57)

(c.58)

(c.5e)

(C.60)

(c.61)
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Time-Averaging Cyclic Spectrum Analyzer.

Let c(u)and d(u)be as above and let ,(u):g(u)si2'x", where 9(u)is low pass.

z(t):[ { a(u)"i2n(h+"ol')" ,(* _.u)d,u I o(r)' ,-i2r{fo-aof 
2), 

n(* _.u)' d,t e-izrdot(c.62)

-w) , ( 1) -_w)' g (w ) dw ,i *o'(u + ') e- 2r fo(a -u) (c.63)

(c.64)

(c.65)

(c.66)

(c.67)

(c.68)

(C.6e)

M (a ,b):A (o - f o-ctsf 2)A (b - f o*oof 2)' G (a -6 -r-r'o)

g (€ -w)drriLraot e-iznfoo

{,r(a,b):A( 6 + o lz- fo-o,olz)A( D - o lz-lo*cr 0lz)'G(o -rro)

m(u,u)-J o(u

rh(€,o) -lo(*-ol2) o(w+of 2)'

p (( ,o): I o (* -o lz) o (w *o l2). s (g- w ) d,w

P (o,b):A (6 + a 12)A(6 - o l2)'G(, )

,zll
Lry - G (p) I e @ +1t I z)A (o _-r, I 4' S:o*"0( a * fs)d.a

Fourier Transforrning the Output of a BAP Systern.

Let the output of a single branch system be

z, (t):[ [ t(u,u)x(t_.u)y(t-u)' dud.ue-izo"t (c.20)

Consider the composite system formed by driving a sliding Fourier transformer with the
above output according to

-i2r0r4, (C.zt)

The resultit g system

-i 2naot
(c.7 2)

where

(-['6 
-fY, + I (c.7 3)

(c.7 4)

has standard form

,(t)-/ { *(u ,u)*(t -_u)y ( t _-u)' dud,ae

, (t ):/ s (t -_r) ,' (r),

m (u,0)-/ s (r)k(" -rju __r) e
;Lnaor 

d,T ,



i?xao, 
d, ,

M (e,b):G (a -6 -o'o) K (a,b),

tt 1a ,b ):G (a _.c,o)k( a ,b )

Also of interest is the CSA

P*(o,6 ): G(o)Po(, + i,b),

where pm is the envelope for the composite system relative to
the envelope for k(u,u) relative to f o and or. If the primary
the above formulas hold rvith (i1-Q.

fr(q,o) -fg (r)d (E -r,o),
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(c.75)

(c.76)

(c.7 7)

(c.78)

(c.7e)

fa and 0o:G1 +p, and px is
system is actually BTI then

envelope and its transform,

p*(€,o) - {e ((-, ) pr,(r,o)e-;Znor 4, ,

Fourier Transforrning the Modffied Cyclic Periodograrn Output.

Consider the modified cyclic periodogram subsystem discussed earlier with local oscillator
frequency or:0. The subsystem output is given by (C.70) with &(u,u) determined by
(C.53) and o1{. Let the subsystem output be the input of a sliding Fourier transformer
as in (C.7f) with p:a1-o\: a'0. Using the results above, the composite system output
is given by (C.lZ) and the system is characterized by the following kernel functions:

m(il p):/g (r) o(u _'r)b (r-r) ' ,-i2r(lr-12-as)r dr . ,i2n(lru-lzo) (c.80)

rh ({,o):I S $) a ({-r-o lZ)b (t-r+o 121' ,-;2"{f '- t,-"i' d, r";zn(fi-t)€ ,-in(t'+l')o , (C.81)

M(a,b):G (a -b -rio) A (a -ft)B( b -fil',

[,r(a,b):G(o -c,,o)A (b -fr*a l2)B(b -fz-a l2)'

(c.82)

(c.83)
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Appendix D. Derivation of the QAP System Output Spectrum Forrnula
In this section a formula for the power spectrum of the output of a general BAP

system is derived. Section 4.3 requires the result for a BAP system in which the input to
the system is the complex extended vector, *(t). The formula derived here applies to the
more general case of a BAP system driven by two arbitrary complex valued vectors, x(t)
and y(t). The formula is easily specialized to the case x(t):y(f):*(t). The input
waveforms are assumed to be jointly Gaussian almost cyclostationary. Let the BAP sys-
tem output be given by

,(t)-I { I"'U-u)or"( u,u)y( t-u)'dud,u e-;Zrat (D.1)

N,(t):II
a furfu

,u)n*(t -")y *(t --u)' duda e-i Zrat (D.2)

The output power spectrum is the Fourier transform of its autocorrelation function,

I {m#*(u

s,,(f): { R,,(r), (D-3)

The autocorrelation function can be viewed as the zero frequency component of the Iag
product sine waves,

R,,(i-nto {Et {r(t *r lz)r(t -rlz)'}} (D.4)

result in (D.3), and

(D.5)

q(t tu,u ,a,b ,r)e-iLna(t+r1z) riztB(t-r1z),

where

qL E, {**(t +r1z-u)y*(t +r12-a)'*o(t-rl2-a)'yo$ -rl2-6 )} (D-6)

in the integrand are

-iZr f r g,

Replacing z in (D.a) by its defining expression, (D.2), substituting the
interchanging the order of integrations and summation yields

(u
s*(f):E,o lE t [ { I I [ *#"(u,u)m!,(a,b)'

la,p m,n,p,q

-i2nf r d,ud,udad,bd r\ ,

The sine wave components of
evaluated accordirrg to (8.108),

the fourth-order product embedded
in particular,

8:9t + gz + Qz + gt ,

! t:E t {r^(t +r 1 z -u ) y * (t *r / z-a)' } E t {% $ -r 1 z- a)v r(t -, 1 z-6 )' }',

Q z:Et {r*(t +r 1z-u)ro$ -r 1z-o )'} E, {yo$ +r 1z-a)y o$ -r 1 z-b)' )1,

e t:Et {r^(t +r 1z-")y oU -r lz-b)} E, {yoQ +r1z-a)ro$ -r 1z-a)}',

(D.7)

(D.8)

(D.e)

(D.10)
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) (D.11)

(D. Lz)

terms is investigated

ud,ue_iln a(t +r 1z) (D . 1 3 )

(D.14)

An expression representing Z as a sum of sine waves is obtained as in Section 4.2,

2(t):s,{r(t)} , (D.15)

N

-t I / I *#*(u ,r)Et',.r*(t -u)yn(t -.u)')d,udrr-izta' ,

a, mrfl

(D.10)

iv
:X t I I*i"@,o)DR)^u^(u -u)e-intr(a+u)ri2t\t dudoe-iznot , (D.17)

dmrtu \

N
:X t I J I *k@,r)s)^u^(a)si2no(o-t)r-dr\(z+o)4utro4oriar(\-a)t, (D.18)

a)r, m,n

lV:X tJtt#"(r!\12,a-x1z)sln^(a)d,asi2r(\-")t , (D.19)
o,\ m,n

(D.20)

Z (t):Dzlrrizr Pt 
,

I,L

q+:-2i^(t tr lz-u)y*(t +r1z-a)'io{t -rl2-a)'ir1t -rlz-b

Substitution of (D.Z) inio (D.5) yields a sum of four terms,

S*(f):S, + ^92 +,S3 + ^94 ,

where -91, is defined by (D.s) with g replaced by q*. Each of these
individually.

First Terrn
Substitution of (D.8) in place of g in (D.5) yields,

(tr
s r:Eto{ /f f I I *k@,u)81 tx*(t +r 1z-u)v*(t +r 1z-r)'}d

I om,r

JV

'EEI I *foto ,t)' E, {ro(t -r 1z-a)u o(t -r1z-b)'}' dad,beizn\(t -r1z) r-iz* r' 4 r\-
fp,c 

\-r-, -.\'P\ t- --)rq\- t- -t ) 
)

Recalling (D.2), this is recognized as

S rE to { { 2 (t +r 1 z)z (t -r 1 z)' e-i 2n t' d, r}

-rr,{r*(\,o)s"},( ilr o.\fizr(\-o) ' ;

(D.21)

thus



where

zl"

and where IW is the matrix of transformed rotated BTI kernels
cyclic spectra with the *th row and nth column entry S;o^(a).
tion (D.?L) in (D.14) yields a concise formula for Sr,

Sr:I I Zl, l',{ f -r,) ,

. Es {**(t +r12-u)"r(t -r lz-o ). } Et

^ ?r,{r* (1t+c,',,)s#/ o(of o,\ ,
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(D.22)

and SS is the matrix of
E*ploying representa-

(D.23)
l.L

where Z!" i, the complex amplitude of the sine wave of z at frequency 12.

Second Terrn
Substitution of (D.S) in place of s in (D.5) yields

(N
Sr:Eo{1 X X I l I I l*i"@,u)mfr(a,b)' s-i%ta1t+rtz)e;2r1(t-r1z)"-i2rtr @.24)

lo',p m ,n,p ,q

The changes of variables

sz:Er,{_,, 
*,*u,

(D.27) to the

Sz:Et',{P,

u -w *r f z, a -t -r lz, a -y *r lz, and b :z -r lz yield

I I I t t m,*o@ +r lz,y +r lz)*fr(, -r lz,z -rf z)' ,-iLna(t +r1z) (D.25)
q

(D.26)

(D.27)

(D.28)

la n (t +r 1 2--u) o o(t -r I z-b) ' )' d,ud,ud,ad,bd , L'l'

E, 
',,y *(t -y ) y o(t - r)' )' d.wdrd,y d,zd,,I .

)

,iztr 
p(t -r1z) e-i'n f ' Et {r*(t -* )"0 (f -, )- }

The sine wave components of a product waveform can be represented in the form

g {a(t -u)y(t -u)'1:tn,}(, _u)e-;r\(u+!) ei2r\'t,
x

-i 2n u (a *\lr) ,i 2r o (o -\lz) d,aei Zr\,t

Applyirrg product waveform terms of (D .25) yields
N

I t I t t t I I *#*(* +r 12,y *rlz)*fr(, -rlz,z -rlz)'
furf,,P,i

"-iZna(t+r1z) 
ri2r9(t -r121 

"-;z"lr\51,, (o)u-rru.(o+x1t) 
"iLrx(o-\12) 

ri2n\,t
),t,

-r Is),@),
x



. Sf,^u, (b)', i2nv(o+otz) e-;2nz(b-,t,tz) e--;Zrtltt dadbdwdrd,vara r\.
)

lntegrating with respect to w,r,,y, and z gives
(N

E,'{l X t IlIuXtr+\12'b*,!'lz)ein(n+x1z)rr-itt(b+1'tz)r (D.29)
[",P,x,* m,n,p ,q

. e-;2na(t+r1z) ri2rp(t-r1z) e-;2n f r ei2r(\-r/) t 
d,oaOa r\ .

)

Integrating with respect to r gives

sr:E,o{{ E g [[u*(,+,\t2,b+,,12)Mfr(a-\,12,b-d,lz)' (D.80)
(a,f,I,/ m,rL,p,tt
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' Mfq( o -x lz,b -,!,lz)* ,in(a-\12)r e-in{b-4'12)'sl,ro(o ) slr, (D )'

' sl-+(o)so{-r,(6 )'{o -t -ff-71";zn(\-'tt+u-"u o,ou\ -

lntegrating with respect to 6 gives
(N

sr:E,o[] X t Iuk("{\,f 2,a-*-f *t,p)Mfr(e-\f z,a-"iu -f -il\'
(o,f,\,ly' mrttp ll

's* ,o(dsf^r, ( (t-+-.f)'e;zn(\-/+ e-o)' d,*).
)

(D.31)

Carrying out the time-average effectively samples the sum over d at t!.r-\+|-a leading
to

N
s z: D t I u#"(, *\lz,a +\/2- f -c")ufob -\1 z,a -\12- f -f)' (D.32)

arBr)r. mrn rp rq

. s)*",(")s1,tr!-" @-+-fl'do .

The changes of variables o --o +\f +a)f 2 and \:7rlcr' yield

sr:X X. $ [u;*1r+a**,u+]lufr(,-t'-rt ,a-t-+l (D.33)
p a,p m,n,p,tl -

' s *r" @ + t+) s ilif Q - ffy d,, -
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Replacing the transformed kernels by their rotated versions produces

sr:X I fl [tir i*1y+o,u+ff)tit !,1y+,t,u- +f (D.34)
p. a,P m,n,p,q

s|r:u++)sili: u-+|d, ,

J-s#+,J(, -#fr,it"u'

Third Terrn
Substitution of (D.10) in place of g in (D.5) yields

(x
S.:f,oliI X II I [ [*k@,a)rnfr(a,b)'s-;z*o1t+42)eizr/r(t-r1z)"-i2rfr (D.36)

la,B m,n,p,q

This expression is similar to the corresponding expression for Sz, (D.24). In fact, by
interchanging variables a and 6 and interchanging indices p and q, (D.36) assumes a
form analogous to (D.Za), i.e.,

(tr
Sr:E,o{ I L I [ [ [ { *k@ ,a)kfr(a,b)' s-iha(t +rtz) eiznp(t-r1z) "-itrJt (D.87)

la,pm,n,p,q-----

and therefore

where

kfr(a,b)a *fr(b ,o) (D.38)

Examination of (D.2a) reveals that (D.24) can be made identical to (D.37) by renaming
the waveforms,

rr(t) in (D.24) - yr(t)'in (D.38) , (D.3e)

. E, {r^ (t +r 1 z -u) u o(t -, 1 z- b )} E, {y *(t +r 1 z--o) r, (t -r f z- a)l' du dudado o r\ .

.8,{r*(t+r1z-u)uo(t-r1z-o)} Et{s*(t+r1z-u)xo(t-11z-6)}' d.ud.ud.adbdr\ ,

(D.40)yo\) ir (D.24) --| ,r(t)' in (D.38) ,

*fob ,b) in (D.2a)+ kfrra ,b ) i, (D.38) (D.+t)

and renaming kernels,
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Therefore, the result already obtained for the second term provides a corresponding
result for the third term. Renaming the waveforms and kernels appropriately in (D.3a)
yields

,sr:! X^ g [ilr g-1y+a,,++)ryrU+0,,-ff1' @.42)
p a,p m,n,p,q

s::; @ ++)s;!a. p -t!L1' aa

But, from (D.38) it can be shown that

fi(",o):t{t fr(",-r) . (D.43)

Eliminating kf.o- (D.42) using (D.43) yields,

. -X \] g Iriti*1y+a,o+ff)tfifou+i,,--u*";u) (D.44)u'-'r 
a,B m,n,p,q

. s !+.:.1r, 1{a)s. !1p. b - | !-fi )' d,aa^!pt 2'loart 2

The matrix form thus becomes

(D.45)

s,: lrr {/ X*tr*",, + ff)' s 1} (o + ttz)Drtf U + B,- o * :li-L1a s #! @ - +)" d, } .

7 l'?-"' Z'-xY' 2'V 2' )'x \ 2' 
)

Arternarivery, using rhe cycric _" 
illrf:;,l;;ry (D.46)

(D.45) becomes

(D.47)

s3:!Tr{/ft*tr* a,o+plro )r s!l:@+!!zlXlif(f+B ,-r+t':P )u st'+.g(--r, /+ii 1'r.,1

r I o -u"- 2 ) "*Y'\' 2'V \' " "'-2 ' "xY ' "' 
''*"1

Fourth Terrn
Substitution of (D.11) in place of g in (D.5) yields,

s+:-2Eto{{zt(t+r1z)z'(t-r1z)'e-;zul'dr} , (D.48)

where z' is the output of the system driven by the sine wave components of the inputs
alone, i.e.,

z, (l4t g 
{ I*i-@,.o)i*(t-u)l*(t-a)'d,ud,u "-i}tr.,t . (D.49)

d tn,tu
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Note that since Elti(f +rJi( t+t)'):i(t+tr)lU*tr)', equation (D.13) can be made to
resemble (D.48) by letting x+i and y+f in (D.13). Thus, the result for the first term
provides an expression for the fourth term:

where Tf,, is defined by (D.22) with x-+i and y--+f. The four terms are summed to
form th e co mp rete exp ression t" j) 

;: ; i;;-,T;;:;" 
-'

' 
(D'51)

+!rr 
{, ?*, r* o,, + fff sf**'(, + +)Ertf U + i,, - $l- s # P (a - r tzn )", 

}

*?r, 
{, ?*, r* n,, + ff)rsi,l'( o ++) rlirp U + 9,-, +,'t P )* sf}B(-u + Sf a,\

-2D,1zl, l',{ f -p) ,

lt

where

,zll
Lab

^ ?r,{r* Q**,,)siJ-(,) , d,\

sr:-zDl zi" lr,{ f -ri , (D.50)

(D.52)

as follows. NoteEach of the four terms of
that the third term has the

where

Thus,

is real valued. This is demonstrated(D.51)
form

ss: Ir. f /er(, )Ar( -u). du - ,

p

A'(r)4 Dlf( f +c,,,u*+)'Sjrl"(, *+)

sa:ITr {/Au(r).Ar( _.u)du\' 
,

p

-Ir'{/AP(-u)'A!(" ) du}' ,

lt

-ITr { /Au(u)Ar(- u)' d,u \' 1

lL

-(r'-,J3 1

(D.53)

(D.sa)

(D.55)
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and any number equal to its conjugate is real. The first and fourth terms are real by
inspection. The second term is thus real valued since the sum of all four terms is the
power spectrum which is real valued.

The fourth term of (D.51) disappears if the input waveforms contain no first-order
periodicity. If first-order periodicity does exist, however, the impulses of the fourth term
are canceled by impulses surviving the integration in the second and third terms. The
effects of first-order periodicity are explicitly revealed by expanding the cyclic spectra into
their nonimpulsive and impulsive components,

ss-Dfu + sfo (D.56)

Use of expression of the form

(D.57)

+ r$[rD**N}t's#

where the variables, which follow the same pattern as in the second term of (D.51), have
been suppressed. The fourth term in the integrand is of interest. The portion of Srr{f)2
due to this term is given by the second term of (D.51) with x and y replaced by * and f,
respectively_. Replacement of x and y with * and i in (D.2a) yields an expression recog-
nized as -l,Sr. Thus, this term gives rise to impulses which cancel half of ,9a. Identical

manipulations of the third term of (D.51) give rise to a term which cancels the remaining
half of ,Sa. Thus, an alternative form of (D.51) is

s,,(/)-r lz!" lr,{ f -y)
I,L

(D.58)

this relationship in the second term of (D.51) gives an

(
s,,(ilr:D Ir'1J [mtD**rffD# + N]rrsooffD#

lt q,fr t

+IIT'
tl a,0 {r [lW 1 / +",, q t'!r" )r D ll " @ + !7s-ltho U + l, u - Sl 

r 
o y; g p - | !r0 )H

+1F11+o, o*r!r" )'slf,"1r+ltzltif 1y+o,r-t'!ro f off7p-f t0 )H

+lW1 1 +o,, a pt" 
)r D !i" (r+f llif ( f + i3,, - *lr s!{P {o - ryY

(rir11+",, *t't" 1r Dli"@ +!;:-1rlf (f +t3,-u +$l'o;iop - rt0 
)H

)r, )

+IIT'
P a,P {r

+1W11+o, , * ''!ro )' s{J.'(, +ffltif (f+i,-, +ff1* o;i06 - rtB 
)H

+rF11+a, ,apto )rD-i"(o+ff1*f6 +r),-a+fff s;I!fu-+1" )r) .
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Appendix E. Cyclic Correlation and Cyclic Spectrurn Symrnetry Identities

T12

E,$(')a li* * I ,@+r/z)s(u-rl2)'r-i2,.at 4u (E.1)
-l +OO I 41,t I'

s;(/)4 f,*of1r"-i2zrrr4- (E.2)

, TIZ

R.f(r)a Ji* * I "@+r/2)y(u-rl4H r-i2nau 4u (E.B)
.l +CO I _r lqt l.

s;(/)a 
iO;f O"- 

izrrrl, 
te.4)

Complex-Valued Scalar Waveform Symmetry Relationships.

R&(')-e;"(-r).
R;'(') -R;.(-r) - R;i?)'

R:,. ( r):Ri"(r)-
R#(.)-E;"(-').

R:. (')-B:.(-r) - Rli(i'
sfr(f)-s;"(f).

s;.(/) _s;. (-/)
s:,.( f)-s;"(-/)'
s;,. ( f)-s;,(-/)
s #(f)-s;"(/).

s;. (/) -s;. (-/)
s:,. (/) -s;,(-/)

si -. (f)-s;"(-/)'

(E.5)

(tr-6)

(E.7)

(E-8)

(E-e)

(8. ro)

(E.rr)

(E.rz)

(E.r a)

(E.r+)

(E.rs)

(E. t o)

(E.rz)



Real-Valued Scalar

Cornp lex-Valued Veetor

Waveforrn Syrnmetry Relationships.

R&(-') -RflL)
R;"( r)-n &U)'
R;(-') -RJt)
R;"(r)-R#(')'
s&(-/) :s;;(f)

s;"(f)-s&(-/).
s;(-/) -s#(f)
s;"(f)-s;(/).
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(E.18)

(E.rs)

(E.zo)

(E.21)

(E.zz)

(E.23)

(E.z+)

(E.zs)

(E.zo)

(8.27)

(8.28)

(E.zs)

(E.30)

(e.ar)

(E.az)

(E.ae)

(E.s+)

(E.as)

(E.ao)

(E.az)

(E.ss)

Waveform Symrnetry Relationships.

R#(r):R*;"( -iH
R ?tr)-R ?( -t) 

?
yx\,'xy\./

R*.r3( r)-R*, o'(t)'

sr#(/):s*;"( f)'
S"*3(/):S* ,?(- f)'
S*.r3(/):S* ;" (- f)'
s-,?(/):s*;"( f)'

S**9(/):S**3(-/) '

Real-Valued Yector'Waveforrn Symmetry Relationships.

q,f('):R*i(-') '
R*;(r):R*, "(t).

sri'(/):s* i?il'
s-;(/):s*;"( - f)'

s*i(/):s*f (-/) r - s*;"( f)'
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Appendix F. Derivation of the Cyclic Spectrum Forrnulas for LAP Systerns and
Frequency-Shifted M-PAM Signals

Consider a pair of vector-input vector-output LAP systems described by

y(i1:Jtr(t,r)rx(r)dr , (F.1)

(F.2)

The impulse-response matrices h and g are almost periodic in the sense that each has a
trigonometric expansion of the form

h(f ,r):!h u1-r)ei2tu.t , (F.3)
lJ-

where
T l2

hr(r)A /1;# i,^n, 
t*r,t)r-ilrut ss .

>oc t _r 
12

(F.4)

(F.7)

The output is expressed in input oscillator form as

v(r):X/t u(t-r)rx(r)ri2rw4,. (F.s)
lt

The almost periodic time variation of the systems induces an almost periodic statistical
relationship between the system outputs. In particular, second-order statistics are
characterized by the AP cross correlation matrices,

Rr,(r,r)A E,{v(t+rlz)r,(t-r/4H} , (F.6)

and

R, ,-(t,r)a Et'r,y(t+rlz)r(t-rlz) '}' .

Focus first on the ordinary AP cross correlation, Rv, which depends on the input AP
cross comelation matrix and the system function as follows,

R n(t,r):E, {XJhr(r)'*(r !rl2-u1r;zn{t+rtz-u)du (F.8)
It

. l/w(r -r P-a)H gs(o)' 
"-;znx1t 

-tr*t) 4u 7\

:tX/Jhu@)'R**(r-!a.!-,r+u-u)gy(u)'ei21tt'L(t+rtz-u)"-i%r\'(t-rtz-")d,udo. (F.9)
ptr

The cyclic cross correlation matrices are the Fourier coeffi.cients of (F.9),

R$,(r):Ero{q,,(r,r)s-i2rat } 1r.to1
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:XX/Jhu(")'E,o{n**U-+,r*u-u1r-i2zr(c+\-r)I r (F.11)
p^

. g1(u )'edn(r+x)r, 
d2r(\u- p") 

d.udu.

Use of identity (2.179),

E,o{o(t+o)e-i2rot }:o itei2nPo j (F. rz)

in (F.11) yields

nf,(r):XX [{nr/.,;rgc+x-r(r*u-u)sx(r)'.-iz(cr+x-p)(z+u) (F.13)
l.r \

,i r{u+\)r 
,izzr(},.o - uu) 4u4,

Fourier transformation of (F.ta) yields the cyclic spectrum formula

sr:,(/):/tXI/t r(")rJs'+x-r1 a)si2t'"1'+'-')e^(r)' (F.14)
prtr

. e-izr(a+\- p)("1,t) 
er"(p+X)r riZr{\,a-tlu) e-i2nfr d,ad,ud,ud, r

-ID,{ t th*( u)r sS^-r(o)r"no(u-')sx(u)'
ttx

(F.15)

., -r'zr(a+\-r)(r +o), i zzr(I z - t ") 4a + S_ f I a a du d,,

:I//r.r(,r)'sfiJ'-'(/ -''tx 1u;2'(/-$x'-")gx(u)' (r'16)
p,tr

. 
"-ir(a+\-tr)(r+r) 

riar(>'r-t ") d,ud.a

:5ur11-$- +\t-+u) ? sf.,I^-r(/--$lcrty-$--stl-eax1' (F.17)
#,tr

s;(/):tE r$+alz)rs:J'-'(/-";')G{f -rtl2\' . (F.18)
p,tr

The conjugate correlation case is treated by substituting z' for z in (F.O) which is
equivalent to replacing w with w' and s(t,r) with k(f ,r):g(t,r)' in (F.6)-(F.18). Thus



s;.(/)-!Hr( f +a: l2)sff)-p( f -*l^x(/ -rvf 2)'
&,\

where

k(f ,r):[Isr( t -r)r"-^'1

:Ig_^( t -r)* ,i?r\,r 
1

\

and therefore

kx(r)-s-^(t). ,

and

-iZrr d f

:G-x(-r)'

Substituting (F.25) into (F.19) yields the desired formula in terms of the

s:,' (/):I H r( 7 +a I z)r s5)-'11-$) c -, (- f +a I z)yr 
p,x

S,fr,(/):rHr( f +alz)' si*^-u(f -
p,\ *lrx(/-^f z).
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(F.le)

(F.20)

(F.zr)

(F.22)

(F.23)

(F.z+)

(F.25)

actual filter, Et

(F.26)

(F.27)

(F.28)

(F.18) and (F.26)

(F.2e)

(F.30)

Appen-

Kx( q-[ky(r) e

-[B-x ,i,no'd, r *

The output cyclic spectra for a single system, h(f,r), are obtained by specializing
(F.18) and (F.26) with w---x, g:h, and z1r,

s -1,. ( /) :I E u( f +a / 2)r s;1^-'1 1- $lu-, (- f + a / z)yJ 
,u,tr

The cross cyclic spectra for a single system are obtained by specializing
with w---x, g(t,r):\t-r)I or Gy(u):16,, and z---x,

Sr:-(/):XE uff +a 1 z1r s i* P$ 
- 1 t, I z)

lt

s;.(f):IE,p(f +culz)r s:*-,t'(f -r l2)

From (r.2e), (F.30), and identities Sfl(/):s#(/)" and S[.(/):S;.(-/)? fro-
dix E, the following relationships are obtained:



s.fr( f)-Isffu( f -r,12)Hu( f -rvf 2)'
it

s;;.(/)-Is*;r( f +rt lz)H,,( -f -yo lz)
lL

h( f , r):f( t ,r)I,t( r-nT) .

The system is indeed AP since it possesses a Fourier expansion

h( f ,r):f( t,r)l+riLnnrf r

A large class of communication signals can be modeled as an AP system driven by
an information bearing signal. The AP system output cyclic spectra formulas, (F.27) and
(F.28), provide expressions for the cyclic spectra of these signals in terms of the informa-
tion bearing signal statistics and the modulating system parameters. The expressions are
useful in connection with detection, filtering, and identification of such signals. In partic-
ular, although the formulas are derived for a system with continuous input and output,
they are also useful for certain discrete information source modulation formats. Let
f(f ,r) be an arbitrary AP system impulse-response matrix with Fourier expansion of the
form of (F.3). Consider the AP system impulse response, h(t,r), formed by multiplying
f(t,r) by the periodic impulse train !0(r-nT),
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(F.31)

(F.32)

(F.33)

of the form of (F.3), i...,

where

and thus

The system output dupends on
Define the discrete-time input,

-I Di' uQ -') 
"2n 

Pr'iun nr f r
pn,

-I Z*t r-n I r U -r) ri,n ttr
lt fL

-Ih tU -r) r'2r P'r 
,

p

hu(r):I +r*ttrO) ,

Hu( il_fi" p-?,trl)

(F.34)

(F.35)

(F.36)

(F.37 )

(F.38)

(F.3e)

discrete-time samples of the continuous-time input signal.

u(n)A*@r) (F.40)



Then the system output can be expressed as

y(t)-/f( t ,r)' Ir)(r- nT)x(r)d r

:If(, ,nT)r a(n)
n

:tlt 
B(t -nT )r e; zt' ?nr r1nt

nB

An equivalent form, recognized as generalized frequency-shifted PAM, is

v(r):IXds(t-nT)r a(n)r"n^',
zX

where

dx(r)A fr(r) e-i,n\'r ,

ox(/):Fx(/+x)

(F.44)

(F.+s )

(F.46)

having the desired samples o(n):r(nT),
are expressed in terms of f by substituting

(F.47)

The continuous-time signal "(t) ir any signal
n:A,*1 ,*-2, ' ' The cyclic spectra of y( f )
(F.3e) into (F.27),
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(F.+r)

(F.42)

(F.43)

(F.48)

exp ressed
than the

(F.4e)

(F.50)

s,l(/):I 
n+Fp- o t r(t +|l' s;f^-u( f -+)Fx- * t rU -+l

/r,\

-PI+F;l(f+}l,sfi*^t_fr+(frL_")lT(f-+-#)F^,(f-+r
0,^l n ,m I

Use of the cyclic spectrum aliasing formula (G.28) reveals that (F.a8) can be
entirely in terms of the cyclic spectrum of the samples, a(n):s1nY ), rather
cyclic spectrum of the auxiliary continuous-time waveform z(t), i.e.,

s;"(r):n+r pU +t)'3;*'-r1r- fflr,tt -|l',
or in terms of Q,

s h}:P^+i>*(f -'1t*r-r14,3::^-,(/-rtr )o 
^(f 

-\,_.r-ul2)'

Similarly, substitution of (F.39) into (F.28) yields the output cyclic conjugate spectrum
matrix,

s;,(f):I 4reU*+)'S;1 ,-p(f -+)F-,( -f +a: lz) ,

B,

(F.51)



Of course, all the above formulas
frequency-normalized spectra S ;"
G,

An i-portant special
model

can be expressed in terms of the
and S;". using the relationships

s:(/)-rsf (r\ ,

S:.(/) -rS:T Ur ) .
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(F.52)

frequency- and cycle-
derived in Appendix

(F.53)

(F.s+)

M-PAM defined as the signal

(F.ss)

(F.so)

(F.57)

(F.60)

s;,(/):f +or( f -rl*. l2)'S:1'-r'( f -+)o-x(-/+\ +o: l2)
lt,

case is that of frequency-shifted

y (t)-I 6(t -nT)' u(n)r"r\or

where /1 is now restricted to be a vector, ry'1 is nonzero for only a single value of \, say

\6, and OA Oxo. The cyclic spectra for y(i) are given by (F.50) and (F.sz) which collapse

to

sfr(/)- 
+o(f-\o+o,/ 

z)' Si(f -xo)o(/-\o _-af 2). ,

s fr. (/) 
:+o(l-\0 +o I z)'s:''^'(/)o(-/*\o +c\ I z)

The frequency-shifted M-PAM signal model is examined further in Section 2.1.7.

The general formulas (F.50) and (F.52) reduce to the following if a(n) is purely sta-

tionary:

S;( /) :t + Q u$ - p,+ct l 2)' S **U - 1 
1+cr: f 2)Q u-,+ p 1 r ( f - tt+a l 2-p l T )', (F.58)

p. l

P:0,+1,+2, ' ' '

s ;r{ fl :l#Q 
r( I - t + a 1 zlr s **.{ f - 1 +a I 2)Q - u+a + p I r I f + u-a I z -p I r ), (F.5 e )

P:0,*L,*2, ' ' '

The cyclic correlation and cyclic spectrum formulas for the special case of \o:0, i.e.,

ordinary M-PAM, can be derived directly by beginning with

Rfr(,):,.,}%#-$j,,-|,|,,,o,t+Tl2)y(t-Tl2)*,-i2lratdt,

and applying appropriate changes of variables and manipulations. Then (F.56). and

(F.b7)^ur" "urinJblapplying 
the frequency shifting relationships (Z.eOZ) and (2.368).
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Appendix G. Sarnpled Waveforms and a Derivation of the Cyclic Spectrum Aliasing
Formula

Consider the impulse sampled waveforms

x,(r)4"(r)X T\t_-nT):x(t\\";zrntlr (G.1)

y,(f )A yU)I r b(t-nT) - y(t)I ,iLnntf r . (G.2)

The cyclic correlation between impulse sampled waveforms can be expressed as

q3.".(r):rl31+ 
t'f 

,rr+rlz)l,ei2tn(t+r1z)/ry(t-r1z)H\"-i%rm(t-r1z)lr "-;2tratdf 
(G.3)

-Sl2 tu rn

, s12

:?}Ja * _!,r*(' 
*;lz)v(t -r n)H'-i2z(a-n I r +m I rl 4s 

"i2t(n+n)rl2r (G.4)

:TIR^fr-( n - *) l'( r) ri zn(n *m)r I 2r

-f IRfr. P I r(r) r, rp r I r rizrnrf r
fLp

_Iry+o lr(r)r,rprf r Ir \r_nT)
p ,1.

:ry(')Irb(r-kr) j

k

(G.5)

(G.6)

(G.7)

(G.8)

(G.e)

where

R-r(r)A 1j&5l , lr(r)r;rprf r
p

The functior, (1r1, called the discrete-time cyclic correlatiory can be ree>rpressed as fol-
lows,

flfr(r):rE',otx(t+rlz)y(t-rlz)H 
"-izr(a+p 

lr)t 
"izrprlr ) (G.10)

p

-DEo{*( u +r)y(")' e-iznau e-;Znpt' l r l e-iLnarf Z

p

(G.11)



and application of the synchronized averaging formula (2.158) yieids

In (G.8), &&(d has effect only
interval T ,

ft.:.r kr): lim 1

^J, N-*.rc2N+1

:fl,#(fr) 
,

for values of r that are integer multiples of the sampling

-inaTke
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(G. Lz)

(G.13)

(G.14)

(G.15)

(G.16)

(G. L7)

(G.18)

(G.1e)

(G.20)

(G.21)

N

I *(nT +kf )y( nT)' ,-i2xcYrn
n:-N

where

X r, :X (nT),

Y n:Y@T), and

fl"fr(k)a

ry,r, ( r) - ?f fr"^:f ( fr ) \r -kr )
k

Fourier transformation of (G.8) and (G.18) yield

si 
",u):sfr(r) - r 3 :{ (rr) ,

where

Sf, (")a Dfr.!"(fr ) e-; Znok

k

s;rt/)a rIR :"(kr) r-i2n rkr
k

The inverse relationships of these are

fl"!"(r )-

r. 1
Irm

N+oo 21tr+1

N

I xn+kv{r-iLrotu e-itok
n:-N

The functio" fl,$ (t) is the time and frequency normalized form of the discrete-time
cyclic correlation. Note that it is defined in terms of discrete-time wavefortrns xz and yo,
which, in the present circumstance, are samples of the continuous-time waveforms x(t),
and y(t). Substituting (G.t+) into (G.S) yields the relationship

rl2

I
-L 12

3 !" @) ri,nok 4 o ,
(G.22)
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Ll2r
ni"1tr):_rfrSfrlyle;2,rkr a1 (G.23)

The cyclic spectrum functions of (G.19) are scaled such that the power spectrum is a
power density with respect to its argument, e.g.,

rl2,N
I S,,U)af :fr,,(o): ,li* "#_ f lr* l' , (c.24)

-llz tY+@ .lY tr ,r:-N

Ll2r

{ 3*1y1ay:E*(0) : fr*@):ynX,tr1o1 , (G.25)
-LlzT P

Substitution of (G.9) inio (G.21) yields the cyclic spectrum aliasing formula

Sfr(/):XXsj'y+p/?(/+ k lr -p lzr) G.zl)
kp

_I;sff(z-*)l rU-(n 
-m) lzr),

S; (/)-IIsf;I o(f +k -p I 2)
kp

S#'(t):S*r( f +q lzr)

3;(/):IIsJ;+p)tr(+-#) , (G zs)
k P r' ttr'

(G.26)

(G.28)

(G.30)

(G.31)

which for T :L becomes

Note that

If x(t) and y(t) are bandlimited to lf l<B f2 and the sampling interval satisfies the
Nyquist criterion, llT>8, then (G.27) and use of (2.332) and (2.333) yield

s irt fl o, ( f ,o):DDs i"+ 
e t r ff + *- #l o, u + L- -t-, cu + +) 

D B u,a:) (c.32)

:Sfr(/) 
, (G.33)

that is, the cyclic cross spectrum of the continuous-time waveforms can be recovered



exactly from the cyclic
the unity height window

cross spectru m of the samp led
DB(f ,,,) defined by (2.330).
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waveforms by mult,iplication by
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Appendix H. A Tirne Average Criterion for Detection of Almost Cyclostationary Sig-
nals

Consider a detection problem posed as follows. The received signal r(f) is known
to be either o(t) or D(t). A finite memory almost periodically time-variant nonlinear
system is desired that will distinguish between these two possibilities. The particular
waveforms o(t) and 6(l) are unknown. The system is to be designed based on certain
Iimit time average statistics desoibing "(t) and 6(,). Since the system has finite
memory it may be impossible to choose correctly whether r(t):o(t) or r(t):6(t).
Therefore, let the system operate continually in time on r(f) to produce the waveform
y (l ), where

if y(t)>l then choose o(t) based on ,(u), f -r t l2{u (r+r t 12,

if y(t) <l'then choose b(t) based on ,(u), ,--\ t lz{u(r+: t 12.

The decision is then a function of time. The average performance of the system can be
characterized in terms of certain idealized measurements, for example, the fraction of
detections

(H-1)

where

(H.2)

P, L E,o{, ( y (t ;a)-^,) },

A ft for f>o
, (r)a lo for r (0,

and y(t;o)is the system output if z(t):a(t). This is just the fraction of time that a(f )
is chosen correctly. AIso of interest is the fraction of misses

Pua E,'{u(t-y(t;o))} : r-Po (H.3)

which is just the fraction of time that 6(f) is chosen incorrectly, i.e., o(l)is missed, and
the fraction of false alarms

PF4 Eto{" ( y (t;a )- r)} (H.4)

which is the fraction of time that a(t) is chosen incorrectly. The system is considered
optimum if it maximizes the fraction of detections while constraining the fraction of false
alarms to be below a predetermined level Pp' . This is the Neyman-Pearson detection
rule. The optimization problem is thus

maximize Pp subject to PF{Pr'

or equivalently

minimize Pga subject to PF{Pr'

Consider the function (from the theory of Lagrange multipliers)

c A PM+\( PF-Pe') . (H.5)

Clearly if C is minimized for all positive values of the parameter \ and the constraint
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parameter Pp', then C:Pu is minimized for Pp-Pr' . It can be shown that Py can-
not be reduced further by forcing Pr.--Pr' 1721. Note that Po)O, Pu)_O, and Pp)0.
The optimization problem becomes

minimize C -P u+\ V r -P r' ) for all P F \>0 .

l-P r, or

(H.6)

Define the fraction of fime that b(t ) i. correctly chosen

PB-E,o{r(-,-y(f;6))} (H.7)

The function C can be expressed as

C:Pw+\(1-PB -Pe') , (H.8)

C:\(1-Pr')+Pr-\P, (H.9)

The variables \ and Pp' do not depend on the system. Thus C is minimized if the fol-
lowing is minimized

I
,

Aas PB

Ct :Pru-,\Pa 
,

c' :E 
t0 {u (^i -y (u o )) } -\Ero{u (^1-e ( t ; 6 ))}

The almost periodic system that produces y(t) from r(t) can be considered
from {r(u), t-tt lzSult+tt f z], to y(t) and can be denoted by

Y (t ir):D, ts (f )} '

The operator D t can be arbitrarily closely represented by

y (t;, ):r.rlim D,'{*(f )} ,

a finite dimensional operator

(H.13)

where the N-dimensional vector x is composed of samples of r(u) over the observation
interval, i.e.,

(H.10)

(H.11)

a mapping

(H. L2)

is apparently required to exploit fraction of time den-
they are finite dimensional. Using the above notation

(H.15)

where it is assumed that the order of taking the limit time average and the limit with
respect to N can be interchanged. This can be expressed as

C': Iim {E,o{s,(a(t))}-xr,o{s,(u(r))}} (tt.t0;
,/v+6

x(r)e 1,1,-{),.u-***),,U-**#), . . . ,r,-#*1{#f)t?. (H.r4)

A finite dimensional representation
sities which are \Mell defined only if
for describing the system,



where the sine wave exbraction operator Ertr'l is defined by
therefore gtO are constrained bo be almost periodic, the fun
wave extraction (3.125) yields

E, 'rgt(a( r )) i: I I |gr (') f 
^1t1(v) 

dv
2N-told
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where

gt(x( r ))A u (t-D,'{*(r ) }) . (H. L7)

The waveform !s("(t)) can be decomposed into a sum of sine waves (including the zero
frequency sine wave) plus a residual (zero mean) signal. From property (2.L71) it follows
that

E,o',g,(a(r))):8,0 {E,ls,("(r))}} , (H.ls)

(2.L36). Since D{ui-i and
damental theorem of sine

(H.1e)

(H.2r)

where

(H.22)

The quantiby C' is minimized if the 2N-fold ( 2N because v is complex valued) integral
is minimized for every value of f . The integral is minimized if the integrand is minim-
ized for every vector v. Also note that

e,(v):[0,t]]0, /"1r1(..))0, /u1r1(r))0, \>0. (H.23)

Nonnegativity of the CFOTD in general is established by Gardner in [39]; the CFOTD is
obviously nonnegative for GAC waveforms. Clearly the integrand is minimized by
designing 91(v) and thus D,tr['I such that

\/o(,)(')>/4ry(") I et(r):r (H.24)

while

\/ut,l(')</4ry(v) * et(r):0. (H.25)

The optimum decision rule can therefore be stated as

,\ry(v,l)<X+Dlo{')<-t, (H.26)

where /"1ry(r) is the composite fraction-of-time density (a.fOA). ttrus

,' :olTlu,o',1 s,('Uq,1(")d" - x/ar(u)/511y(u)du) (H.20)

:,J,jL E,o'rI g,(r) U ^111(v)-\/u1ry(v))d"]



'\.n,(r,t )>\ + D l'.r{r } }^,

where ,\s is the fraction-of-time likelihood ratio,

,lp(v, r ) A /"1, y(')//u1, 1(')

The threshold parameter \ of the optimum decision rule is fixed by the
of false alarms Pp' . Recall that
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(H.27)

(H.28)

desired fraction

u ('i-Dfl[r])-" (\-,rN (v,f )), thus

P F :L-8,' 
{ [ "(\-,\.rs(t, r ))/o1r y(v) du I

Since /5111(v))0, this expression shows that Pp is a monotonically nonincreasing function
of I. Il /6111(v) and .,Lry(v,t) are continuous in y, then since Pp(\:O):1 and

Pp(\:oo):0,'there exists some \:\' such that

Pr:Pp' :t-Erotrlu(\'-,liy(v,t))/61,1(v)dv| , (H.33)

P p :L-E,o i, ( l-y (t; 6 )) )

:L-EIOtuu (-,-Dfltu(' ) l) )

:L-E oi/ u(-,-Dfl{"})/u1ry(v) du\

but

or equivalently, there exists some function T(P" ) such that

\,:T(pr,) .

the desired result.

There are many systerns Dlo{"( f )} and associated thresholds
sion rule. For example,

olo{*(r )}-,.tN(*(r ),r ) with ^i,-\

(H. zs)

(H.30)

(H.31)

(H.32)

(H.s+)

-P r' ) - P M, which is

^i that satisfy the deci-

almost cyclostationary
and b(r) have Gaussian

(H.as)

is an optimum detector. Alternatively, since r\ry(v,t))0 and the logarithm is a monoton-
ically increasing function,

Dlo{*(r )}-tn,[ru(*(t ), r ) with ^/:ln\

is also an optimum detector.

Gaussian Case

S,rppose that o (t ) and b (t ) are zero mean Gaussian
waveforms. Then the CFOTDs for the vectors of samples a( t )
form. The log likelihood rabio detector is then specified by

D lo {*( r )}-tnAN (x( r ), r )

(H.36)



-ln
lKuu(r)l-'t'
lKss(t)l-'t'
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+ i*U)'(Kss( r )-1-Kuu(r )-1)*(, ) ln\ , (H.37)

a

b

in which the detection statistic is the output of a QAP system. Note that the additive
almost periodic term ln lKuo(r) l-rl2llfss(r)l-'/' i. independent of the particular
received lvaveform and can therefore be incorporated into the threshold.

For detection of the presense of a low level Gaussian almost cyclostationary signal
in white Gaussian noise the detector approaches a particularly simple form. Let

'where s(t) is the signal of interest and u(t) is bandlimited purely stationary Gaussian
noise with spectral density S,,(/):I[o"pU), where B:N lst. Then for sufficiently low
signal to noise energy coherence, i.e., lKuu(r)l<< lf**(r) l, the log likelihood ratio
becomes approximately

o(t):'(r)+*(t)

b(t)-,(r) j

(H.88)

(H.3e)

(H.40)

L L *(*(r ),r ) (H.41)

(H.+z)

functions

(H.+a)

tnAr(x(r ),r1=-jf - o(, )EKss(, )*(r ) ,

or equivalently

rn,riy (x( t),t )=-+$*"1*1, )H r."1 r 1x1 r ) +x( r )' K"". ( r )*( r )' )

LN(*(t),t):+5'!'*.{,(/-.rtl2*nT)-,(t-Atl2+mT)
{t/Yg n:0 m:0

8,, (t -e t lz+(" *m)f 12,(n -m)f )f'

+r(t -rt l2+nT)'r(t -tt lz+mT )'8,,.(t -tt /2+(n +m)T 12,(n -m)T)Tz),

where T:tt lN and Rrr(t,r) and R,,.(trr) are the almost periodic correlation
(2.195) and (2.196). Letting N approach infinity with at fixed (B+oo) yields

z$)L tim rr(x(t),t)

where

^t l2II
-^t 12

R.{ ,(t *u)' r(t +u)8,, (r +( u *u) lz,u _.u)

* r(t +u)' *(t +u).fi,,.(, +( u *u) lz,rl -, )) dudu.

(H.++)



Substitution of the Fourier expansions of the AP correlation functions yields

^t 
lz

,U):*uR"II I I trt, +u)r(t *r)' e-;n'('*')8,?(,-r)'
{lY6 d -^t12

XotU,ilA + [uo,U-.o)r(o)r-iLnfa 4,
V_rf r
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(H.45)

+r(t +u)z(t +u)e-dea(n+u)Bc. (u -r)'] "-iLrat 
dud,o l.

The system producing z(f) is clearly a quadratic almost periodic system of the form
(4.29) operating on the received waveform ,{t). Further manipulation yields the
equivalent frequency domain form

,(t):trR.{T/"ar(f,f+c,.f2)Xo,U,f-al2).,S#(f)-d,f (H.46)

+I {x o,U,f +n l})x o,u ,-f +ol2)E:. (/). d.f \ 1

where

(H.+z)

Thus, the detector can be interpreted as the sum of frequency smoothed cyclic periodo-
grams where the weighting functions are the cyclic spectra of the signal of interest. This
agrees with the detector derived in [31] using the couventional probabilistic framework of
random processes.
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