Previous SPTK Post: Examples of Random Variables Next SPTK Post: The Sampling Theorem

In this Signal Processing ToolKit post, I provide an introduction to the concept and use of random processes (also called stochastic processes). This is *my* perspective on random processes, so although I’ll introduce and use the conventional concepts of stationarity and ergodicity, I’ll end up focusing on the differences between stationary and cyclostationary random processes. The goal is to illustrate those differences with informative graphics and videos; to build intuition in the reader about how the cyclostationarity property comes about, and about how the property relates to the more abstract mathematical object of a random process on one hand and to the concrete data-centric signal on the other.

So … this is the first SPTK post that is also a CSP post.

Continue reading “SPTK (and CSP): Random Processes”