All BPSK Signals

Update June 2020

I’ll be adding new papers to this post as I find them. At the end of the original post there is a sequence of date-labeled updates that briefly describe the relevant aspects of the newly found papers.

Continue reading “All BPSK Signals”

Symmetries of Higher-Order Temporal Probabilistic Parameters in CSP

In this post, we continue our study of the symmetries of CSP parameters. The second-order parameters–spectral correlation and cyclic correlation–are covered in detail in the companion post, including the symmetries for ‘auto’ and ‘cross’ versions of those parameters.

Here we tackle the generalizations of cyclic correlation: cyclic temporal moments and cumulants. We’ll deal with the generalization of the spectral correlation function, the  cyclic polyspectra, in a subsequent post. It is reasonable to me to focus first on the higher-order temporal parameters, because I consider the temporal parameters to be much more useful in practice than the spectral parameters.

This topic is somewhat harder and more abstract than the second-order topic, but perhaps there are bigger payoffs in algorithm development for exploiting symmetries in higher-order parameters than in second-order parameters because the parameters are multidimensional. So it could be worthwhile to sally forth.

Continue reading “Symmetries of Higher-Order Temporal Probabilistic Parameters in CSP”

Symmetries of Second-Order Probabilistic Parameters in CSP

As you progress through the various stages of learning CSP (intimidation, frustration, elucidation, puzzlement, and finally smooth operation), the symmetries of the various functions come up over and over again. Exploiting symmetries can result in lower computational costs, quicker debugging, and easier mathematical development.

What exactly do we mean by ‘symmetries of parameters?’ I’m talking primarily about the evenness or oddness of the time-domain functions in the delay \tau and cycle frequency \alpha variables and of the frequency-domain functions in the spectral frequency f and cycle frequency \alpha variables. Or a generalized version of evenness/oddness, such as f(-x) = g(x), where f(x) and g(x) are closely related functions. We have to consider the non-conjugate and conjugate functions separately, and we’ll also consider both the auto and cross versions of the parameters. We’ll look at higher-order cyclic moments and cumulants in a future post.

You can use this post as a resource for mathematical development because I present the symmetry equations. But also each symmetry result is illustrated using estimated parameters via the frequency smoothing method (FSM) of spectral correlation function estimation. The time-domain parameters are obtained from the inverse transforms of the FSM parameters. So you can also use this post as an extension of the second-order verification guide to ensure that your estimator works for a wide variety of input parameters.

Continue reading “Symmetries of Second-Order Probabilistic Parameters in CSP”

The Ambiguity Function and the Cyclic Autocorrelation Function: Are They the Same Thing?

Let’s talk about ambiguity and correlation. The ambiguity function is a core component of radar signal processing practice and theory. The autocorrelation function and the cyclic autocorrelation function, are key elements of generic signal processing and cyclostationary signal processing, respectively. Ambiguity and correlation both apply a quadratic functional to the data or signal of interest, and they both weight that quadratic functional by a complex exponential (sine wave) prior to integration or summation.

Are they the same thing? Well, my answer is both yes and no.

Continue reading “The Ambiguity Function and the Cyclic Autocorrelation Function: Are They the Same Thing?”

CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano

My friend and colleague Antonio Napolitano has just published a new book on cyclostationary signals and cyclostationary signal processing:

Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations, Academic Press/Elsevier, 2020, ISBN: 978-0-08-102708-0. The book is a comprehensive guide to the structure of cyclostationary random processes and signals, and it also provides pointers to the literature on many different applications. The book is mathematical in nature; use it to deepen your understanding of the underlying mathematics that make CSP possible.

You can check out the book on amazon.com using the following link:

Cyclostationary Processes and Time Series

Continue reading “CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano”

On Impulsive Noise, CSP, and Correntropy

I’ve seen several published and pre-published (arXiv.org) technical papers over the past couple of years on the topic of cyclic correntropy (The Literature [R123-R127]). I first criticized such a paper ([R123]) here, but the substance of that review was about my problems with the presented mathematics, not impulsive noise and its effects on CSP. Since the papers keep coming, apparently, I’m going to put down some thoughts on impulsive noise and some evidence regarding simple means of mitigation in the context of CSP. Preview: I don’t think we need to go to the trouble of investigating cyclic correntropy as a means of salvaging CSP from the clutches of impulsive noise.

Continue reading “On Impulsive Noise, CSP, and Correntropy”

On The Shoulders

What modest academic success I’ve had in the area of cyclostationary signal theory and cyclostationary signal processing is largely due to the patient mentorship of my doctoral adviser, William (Bill) Gardner, and the fact that I was able to build on an excellent foundation put in place by Gardner, his advisor Lewis Franks, and key Gardner students such as William (Bill) Brown.

Continue reading “On The Shoulders”

Simple Synchronization Using CSP

In this post I discuss the use of cyclostationary signal processing applied to communication-signal synchronization problems. First, just what are synchronization problems? Synchronize and synchronization have multiple meanings, but the meaning of synchronize that is relevant here is something like:

syn·chro·nize: To cause to occur or operate with exact coincidence in time or rate

If we have an analog amplitude-modulated (AM) signal (such as voice AM used in the AM broadcast bands) at a receiver we want to remove the effects of the carrier sine wave, resulting in an output that is only the original voice or music message. If we have a digital signal such as binary phase-shift keying (BPSK), we want to remove the effects of the carrier but also sample the message signal at the correct instants to optimally recover the transmitted bit sequence. 

Continue reading “Simple Synchronization Using CSP”

Data Set for the Machine-Learning Challenge

Update September 2020. I made a mistake when I created the signal-parameter “truth” files signal_record.txt and signal_record_first_20000.txt. Like the DeepSig RML data sets that I analyzed on the CSP Blog here and here, the SNR parameter in the truth files did not match the actual SNR of the signals in the data files. I’ve updated the truth files and the links below. You can still use the original files for all other signal parameters, but the SNR parameter was in error.

Update July 2020. I originally posted 20,000 signals in the posted data set. I’ve now added another 92,000 for a total of 112,000 signals. The original signals are contained in Batches 1-5, the additional signals in Batches 6-28. I’ve placed these additional Batches at the end of the post to preserve the original post’s content.

I’ve posted 20000 PSK/QAM signals to the CSP Blog. These are the signals I refer to in the post I wrote challenging the machine-learners. In this brief post, I provide links to the data and describe how to interpret the text file containing the signal-type labels and signal parameters.

Overview of Data Set

The 20,000 signals are stored in five zip files, each containing 4000 individual signal files:

Batch 1

Batch 2

Batch 3

Batch 4

Batch 5

The zip files are each about 1 GB in size.

The modulation-type labels for the signals, such as “BPSK” or “MSK,” are contained in the text file:

signal_record_first_20000.txt

Each signal file is stored in a binary format involving interleaved real and imaginary parts, which I call ‘.tim’ files. You can read a .tim file into MATLAB using read_binary.m. Or use the code inside read_binary.m to write your own data-reader; the format is quite simple.

The Label and Parameter File

Let’s look at the format of the truth/label file. The first line of signal_record_first_20000.txt is

1 bpsk  11  -7.4433467080e-04  9.8977795076e-01  10  9  5.4532617590e+00  0.0

which comprises 9 fields. All temporal and spectral parameters (times and frequencies) are normalized with respect to the sampling rate. In other words, the sampling rate can be taken to be unity in this data set. These fields are described in the following list:

  1. Signal index. In the case above this is `1′ and that means the file containing the signal is called signal_1.tim. In general, the nth signal is contained in the file signal_n.tim. The Batch 1 zip file contains signal_1.tim through signal_4000.tim.
  2. Signal type. A string indicating the modulation format of the signal in the file. For this data set, I’ve only got eight modulation types: BPSK, QPSK, 8PSK, \pi/4-DQPSK, 16QAM, 64QAM, 256QAM, and MSK. These are denoted by the strings bpsk, qpsk, 8psk, dqpsk, 16qam, 64qam, 256qam, and msk, respectively.
  3. Base symbol period. In the example above (line one of the truth file), the base symbol period is T_0 = 11.
  4. Carrier offset. In this case, it is -7.4433467080\times 10^{-4}.
  5. Excess bandwidth. The excess bandwidth parameter, or square-root raised-cosine roll-off parameter, applies to all of the signal types except MSK. Here it is 9.8977795076\times 10^{-1}. It can be any real number between 0.1 and 1.0.
  6. Upsample factor. The sixth field is an upsampling parameter U.
  7. Downsample factor. The seventh field is a downsampling parameter D. The actual symbol rate of the signal in the file is computed from the base symbol period, upsample factor, and downsample factor: \displaystyle f_{sym} = (1/T_0)*(D/U). So the BPSK signal in signal_1.tim has rate 0.08181818. If the downsample factor is zero in the truth-parameters file, no resampling was done to the signal.
  8. Inband SNR (dB). The ratio of the signal power to the noise power within the signal’s bandwidth, taking into account the signal type and the excess bandwidth parameter.
  9. Noise spectral density (dB). It is always 0 dB. So the various SNRs are generated by varying the signal power.

To ensure that you have correctly downloaded and interpreted my data files, I’m going to provide some PSD plots and a couple of the actual sample values for a couple of the files.

signal_1.tim

The line from the truth file is:

1 bpsk  11  -7.4433467080e-04  9.8977795076e-01  10  9  5.4532617590e+00  0.0

The first ten samples of the file are:

-5.703014e-02   -6.163056e-01
-1.285231e-01   -6.318392e-01
6.664069e-01    -7.007506e-02
7.731103e-01    -1.164615e+00
3.502680e-01    -1.097872e+00
7.825349e-01    -3.721564e-01
1.094809e+00    -3.123962e-01
4.146149e-01    -5.890701e-01
1.444665e+00    7.358724e-01
-2.217039e-01   -1.305001e+00

An FSM-based PSD estimate for signal_1.tim is:

psd_1

And the blindly estimated cycle frequencies (using the SSCA) are:

cfs_signal_1

The previous plot corresponds to the numerical values:

Non-conjugate (\alpha, C, S):

8.181762695e-02  7.480e-01  5.406e+00

Conjugate (\alpha, C, S):

8.032470942e-02  7.800e-01  4.978e+00
-1.493096002e-03  8.576e-01  1.098e+01
-8.331298083e-02  7.090e-01  5.039e+00

signal_4000.tim

The line from the truth file is

4000 256qam  9  8.3914849139e-04  7.2367959637e-01  9  8  1.0566301192e+01  0.0

which means the symbol rate is given by (1/9)*(8/9) = 0.09876543209. The carrier offset is 0.000839 and the excess bandwidth is 0.723. Because the signal type is 256QAM, it has a single (non-zero) non-conjugate cycle frequency of 0.098765 and no conjugate cycle frequencies. But the square of the signal has cycle frequencies related to the quadrupled carrier:

cfs_signal_4000

Final Thoughts

Is 20000 waveforms a large enough data set? Maybe not. I have generated tens of thousands more, but will not post until there is a good reason to do so. And that, my friends, is up to you!

That’s about it. I think that gives you enough information to ensure that you’ve interpreted the data and the labels correctly. What remains is experimentation, machine-learning or otherwise I suppose. Please get back to me and the readers of the CSP Blog with any interesting results using the Comments section of this post or the Challenge post.

For my analysis of a commonly used machine-learning modulation-recognition data set (RML), see the All BPSK Signals post.

Additional Batches of Signals:

Batch 6

Batch 7

Batch 8

Batch 9

Batch 10

Batch 11

Batch 12

Batch 13

Batch 14

Batch 15

Batch 16

Batch 17

Batch 18

Batch 19

Batch 20

Batch 21

Batch 22

Batch 23

Batch 24

Batch 25

Batch 26

Batch 27

Batch 28

Signal parameters text file

MATLAB’s SSCA: commP25ssca.m

In this short post, I describe some errors that are produced by MATLAB’s strip spectral correlation analyzer function commP25ssca.m. I don’t recommend that you use it; far better to create your own function.

Continue reading “MATLAB’s SSCA: commP25ssca.m”

How we Learned CSP

This post is just a blog post. Just some guy on the internet thinking out loud. If you have relevant thoughts or arguments you’d like to advance, please leave them in the Comments section at the end of the post.

How did we, as people not machines, learn to do cyclostationary signal processing? We’ve successfully applied it to many real-world problems, such as weak-signal detection, interference-tolerant detection, interference-tolerant time-delay estimation, modulation recognition, joint multiple-cochannel-signal modulation recognition (My Papers [25,26,28,38,43]), synchronization (The Literature [R7]), beamforming (The Literature [R102,R103]), direction-finding (The Literature [R104-R106]), detection of imminent mechanical failures (The Literature [R017-R109]), linear time-invariant system identification (The Literature [R110-R115]), and linear periodically time-variant filtering for cochannel signal separation (FRESH filtering) (My Papers [45], The Literature [R6]).

How did this come about? Is it even interesting to ask the question? Well, it is to me. I ask it because of the current hot topic in signal processing: machine learning. And in particular, machine learning applied to modulation recognition (see here and here). The machine learners want to capitalize on the success of machine learning applied to image recognition by directly applying the same sorts of image-recognition techniques to the problem of automatic type-recognition for human-made electromagnetic waves.

Continue reading “How we Learned CSP”

A Challenge for the Machine Learners

UPDATE

I’ve decided to post the data set I discuss here to the CSP Blog for all interested parties to use. See the new post on the Data Set. If you do use it, please let me and the CSP Blog readers know how you fared with your experiments in the Comments section of either post. Thanks!

Continue reading “A Challenge for the Machine Learners”

Computational Costs for Spectral Correlation Estimators

Let’s look at the computational costs for spectral-correlation analysis using the three main estimators I’ve previously described on the CSP Blog: the frequency-smoothing method (FSM), the time-smoothing method (TSM), and the strip spectral correlation analyzer (SSCA).

We’ll see that the FSM and TSM are the low-cost options when estimating the spectral correlation function for a few cycle frequencies and that the SSCA is the low-cost option when estimating the spectral correlation function for many cycle frequencies. That is, the TSM and FSM are good options for directed analysis using prior information (values of cycle frequencies) and the SSCA is a good option for exhaustive blind analysis, for which there is no prior information available.

Continue reading “Computational Costs for Spectral Correlation Estimators”

CSP Patent: Tunneling

My colleague Dr. Apurva Mody (of BAE Systems, IEEE 802.22, and the WhiteSpace Alliance) and I have received a patent on a CSP-related invention we call tunneling. The US Patent is 9,755,869 and you can read it here or download it here. We’ve got a journal paper in review and a 2013 MILCOM conference paper (My Papers [38]) that discuss and illustrate the involved ideas. I’m also working on a CSP Blog post on the topic.

Update December 28, 2017: Our Tunneling journal paper has been accepted for publication in the journal IEEE Transactions on Cognitive Communications and Networking. You can download the pre-publication version here.

Continue reading “CSP Patent: Tunneling”

Resolution in Time, Frequency, and Cycle Frequency for CSP Estimators

In this post, we look at the ability of various CSP estimators to distinguish cycle frequencies, temporal changes in cyclostationarity, and spectral features. These abilities are quantified by the resolution properties of CSP estimators.

Resolution Parameters in CSP: Preview

Consider performing some CSP estimation task, such as using the frequency-smoothing method, time-smoothing method, or strip spectral correlation analyzer method of estimating the spectral correlation function. The estimate employs T seconds of data.

Then the temporal resolution \Delta t of the estimate is approximately T, the cycle-frequency resolution \Delta \alpha is about 1/T, and the spectral resolution \Delta f depends strongly on the particular estimator and its parameters. The resolution product \Delta f \Delta t was discussed in this post. The fundamental result for the resolution product is that it must be very much larger than unity in order to obtain an SCF estimate with low variance.

Continue reading “Resolution in Time, Frequency, and Cycle Frequency for CSP Estimators”

CSP Estimators: Cyclic Temporal Moments and Cumulants

In this post we discuss ways of estimating n-th order cyclic temporal moment and cumulant functions. Recall that for n=2, cyclic moments and cyclic cumulants are usually identical. They differ when the signal contains one or more finite-strength additive sine-wave components. In the common case when such components are absent (as in our recurring numerical example involving rectangular-pulse BPSK), they are equal and they are also equal to the conventional cyclic autocorrelation function provided the delay vector is chosen appropriately.

The more interesting case is when the order n is greater than 2. Most communication signal models possess odd-order moments and cumulants that are identically zero, so the first non-trivial order n greater than 2 is 4. Our estimation task is to estimate n-th order temporal moment and cumulant functions for n \ge 4 using a sampled-data record of length T.

Continue reading “CSP Estimators: Cyclic Temporal Moments and Cumulants”

CSP Blog Highlights

Welcome to the CSP Blog!

To help new readers, I’m supplying here links to the posts that have gotten the most attention over the lifetime of the Blog. Omitted from this list are the more esoteric topics as well as most of the posts that comment on the engineering literature.

Click the button below to follow the CSP Blog:

Follow Cyclostationary Signal Processing on WordPress.com

Use this button to donate to the CSP Blog:

Support the CSP Blog and Keep it Ad-Free

Please consider donating to the CSP Blog to keep it ad-free and to support the addition of major new features. The small box below is used to specify the number of $5 donations.

$5.00

You can see a pre-publication version of my latest CSP journal paper, on “tunneling”, here.

Here are the highlights:

Continue reading “CSP Blog Highlights”

Automatic Spectral Segmentation

In this post, I discuss a signal-processing algorithm that has almost nothing to do with cyclostationary signal processing. Almost. The topic is automated spectral segmentation, which I also call band-of-interest (BOI) detection. When attempting to perform automatic radio-frequency scene analysis (RFSA), we may be confronted with a data block that contains multiple signals in a large number of distinct frequency subbands. Moreover, these signals may be turning on an off within the data block. To apply our cyclostationary signal processing tools effectively, we would like to isolate these signals in time and frequency to the greatest extent possible using linear time-invariant filtering (for separating in the frequency dimension) and time-gating (for separating in the time dimension). Then the isolated signal components can be processed serially.

It is very important to remember that even perfect spectral and temporal segmentation will not solve the cochannel-signal problem. It is perfectly possible that an isolated subband will contain more that one cochannel signal.

The basics of my BOI-detection approach are published in a 2007 conference paper (My Papers [32]). I’ll describe this basic approach, illustrate it with examples relevant to RFSA, and also provide a few extensions of interest, including one that relates to cyclostationary signal processing.

Continue reading “Automatic Spectral Segmentation”

More on Pure and Impure Sine Waves

Remember when we derived the cumulant as the solution to the pure nth-order sine-wave problem? It sounded good at the time, I hope. But here I describe a curious special case where the interpretation of the cumulant as the pure component of a nonlinearly generated sine wave seems to break down.

Continue reading “More on Pure and Impure Sine Waves”

Cyclostationarity of Direct-Sequence Spread-Spectrum Signals

In this post we look at direct-sequence spread-spectrum (DSSS) signals, which can be usefully modeled as a kind of PSK signal. DSSS signals are used in a variety of real-world situations, including the familiar CDMA and WCDMA signals, covert signaling, and GPS. My colleague Antonio Napolitano has done some work on a large class of DSSS signals (The Literature [R11, R17, R95]), resulting in formulas for their spectral correlation functions, and I’ve made some remarks about their cyclostationary properties myself here and there (My Papers [16]).

A good thing, from the point of view of modulation recognition, about DSSS signals is that they are easily distinguished from other PSK and QAM signals by their spectral correlation functions. Whereas most PSK/QAM signals have only a single non-conjugate cycle frequency, and no conjugate cycle frequencies, DSSS signals have many non-conjugate cycle frequencies and in some cases also have many conjugate cycle frequencies.

Continue reading “Cyclostationarity of Direct-Sequence Spread-Spectrum Signals”