The Next Logical Step in CSP+ML for Modulation Recognition: Snoap’s MILCOM ’23 Paper [Preview]

We are attempting to force a neural network to learn the features that we have already shown deliver simultaneous good performance and good generalization.

ODU doctoral student John Snoap and I have a new paper on the convergence of cyclostationary signal processing, machine learning using trained neural networks, and RF modulation classification: My Papers [55] (arxiv.org link here).

Previously in My Papers [50-52, 54] we have shown that the (multitudinous!) neural networks in the literature that use I/Q data as input and perform modulation recognition (output a modulation-class label) are highly brittle. That is, they minimize the classification error, they converge, but they don’t generalize. A trained neural network generalizes well if it can maintain high classification performance even if some of the probability density functions for the data’s random variables differ from the training inputs (in the lab) relative to the application inputs (in the field). The problem is also called the dataset-shift problem or the domain-adaptation problem. Generalization is my preferred term because it is simpler and has a strong connection to the human equivalent: we can quite easily generalize our observations and conclusions from one dataset to another without massive retraining of our neural noggins. We can find the cat in the image even if it is upside-down and colored like a giraffe.

Continue reading “The Next Logical Step in CSP+ML for Modulation Recognition: Snoap’s MILCOM ’23 Paper [Preview]”

A Gallery of Cyclic Cumulants

The third in a series of posts on visualizing the multidimensional functions characterizing the fundamental statistics of communication signals.

Let’s continue our progression of galleries showing plots of the statistics of communication signals. So far we have provided a gallery of spectral correlation surfaces and a gallery of cyclic autocorrelation surfaces. Here we introduce a gallery of cyclic-cumulant matrices.

When we look at the spectral correlation or cyclic autocorrelation surfaces for a variety of communication signal types, we learn that the cycle-frequency patterns exhibited by modulated signals are many and varied, and we get a feeling for how those variations look (see also the Desultory CSP posts). Nevertheless, there are large equivalence classes in terms of spectral correlation. That simply means that a large number of distinct modulation types map to the exact same second-order statistics, and therefore to the exact same spectral correlation and cyclic autocorrelation surfaces. The gallery of cyclic cumulants will reveal, in an easy-to-view way, that many of these equivalence classes are removed once we consider, jointly, both second- and higher-order statistics.

Continue reading “A Gallery of Cyclic Cumulants”

Latest Paper on CSP and Deep-Learning for Modulation Recognition: An Extended Version of My Papers [52]

Another step forward in the merging of CSP and ML for modulation recognition, and another step away from the misstep of always relying on convolutional neural networks from image processing for RF-domain problem-solving.

My Old Dominion colleagues and I have published an extended version of the 2022 MILCOM paper My Papers [52] in the journal MDPI Sensors. The first author is John Snoap, who is one of those rare people that is an expert in signal processing and in machine learning. Bright future there! Dimitrie Popescu, James Latshaw, and I provided analysis, programming, writing, and research-direction support.

Continue reading “Latest Paper on CSP and Deep-Learning for Modulation Recognition: An Extended Version of My Papers [52]”

Cyclostationarity of Frequency-Shift-Keyed Signals

The cyclostationarity of frequency-shift-keyed signals depends strongly on the way the carrier phase evolves over time. Many distinct cycle-frequency patterns and spectral correlation shapes are possible.

Let’s get back to basics by looking at a large class of signals known as frequency-shift-keyed (FSK) signals. We will leave to the side, for the most part, the very large class of signals that goes by the name of continuous-phase modulation (CPM), which includes continuous-phase FSK (CPFSK), MSK, GMSK, and many more (The Literature [R188]-[R190]). Those are treated in My Papers [8], and in a future CSP Blog post.

Here we want to look at more conventional forms of FSK. These signal types don’t necessarily have a continuous phase function. They are generally easier to demodulate and are more robust to noise and interference than the more complicated CPM signal types, but generally have much lower spectral efficiency. They are like the rectangular-pulse PSK of the FSK/CPM world. But they are still used.

Continue reading “Cyclostationarity of Frequency-Shift-Keyed Signals”

Is Radio-Frequency Scene Analysis a Wicked Problem?

By the pricking of my thumbs, something wicked this way comes …

I attended a conference on dynamic spectrum access in 2017 and participated in a session on automatic modulation recognition. The session was connected to a live competition within the conference where participants would attempt to apply their modulation-recognition system to signals transmitted in the conference center by the conference organizers. Like a grand modulation-recognition challenge but confined to the temporal, spectral, and spatial constraints imposed by the short-duration conference.

What I didn’t know going in was the level of frustration on the part of the machine-learner organizers regarding the seeming inability of signal-processing and machine-learning researchers to solve the radio-frequency scene analysis problem once and for all. The basic attitude was ‘if the image-processors can have the AlexNet image-recognition solution, and thereby abandon their decades-long attempt at developing serious mathematics-based image-processing theory and practice, why haven’t we solved the RFSA problem yet?’

Continue reading “Is Radio-Frequency Scene Analysis a Wicked Problem?”

Frequency Shift (FRESH) Filtering for Single-Sensor Cochannel Signal Separation

CSP can be used to separate cochannel contemporaneous signals. The involved signal-processing structure is linear but periodically time-varying.

In most of the posts on the CSP Blog we’ve applied the theory and tools of CSP to parameter estimation of one sort or another: cycle-frequency estimation, time-delay estimation, synchronization-parameter estimation, and of course estimation of the spectral correlation, spectral coherence, cyclic cumulant, and cyclic polyspectral functions.

In this post, we’ll switch gears a bit and look at the problem of waveform estimation. This comes up in two situations for me: single-sensor processing and array (multi-sensor) processing. At some point, I’ll write a post on array processing for waveform estimation (using, say, the SCORE algorithm The Literature [R102]), but here we restrict our attention to the case of waveform estimation using only a single sensor (a single antenna connected to a single receiver). We just have one observed sampled waveform to work with. There are also waveform estimation methods that are multi-sensor but not typically referred to as array processing, such as the blind source separation problem in acoustic scene analysis, which is often solved by principal component analysis (PCA), independent component analysis (ICA), and their variants.

The signal model consists of the noisy sum of two or more modulated waveforms that overlap in both time and frequency. If the signals do not overlap in time, then we can separate them by time gating, and if they do not overlap in frequency, we can separate them using linear time-invariant systems (filters).

Relevant FRESH filtering publications include My Papers [45, 46] and The Literature [R6].

Continue reading “Frequency Shift (FRESH) Filtering for Single-Sensor Cochannel Signal Separation”

PSK/QAM Cochannel Dataset for Modulation Recognition Researchers [CSPB.ML.2023]

The next step in dataset complexity at the CSP Blog: cochannel signals.

I’ve developed another dataset for use in assessing modulation-recognition algorithms (machine-learning-based or otherwise) that is more complex than the original sets I posted for the ML Challenge (CSPB.ML.2018 and CSPB.ML.2022). Half of the new dataset consists of one signal in noise and the other half consists of two signals in noise. In most cases the two signals overlap spectrally, which is a signal condition called cochannel interference.

We’ll call it CSPB.ML.2023.

Continue reading “PSK/QAM Cochannel Dataset for Modulation Recognition Researchers [CSPB.ML.2023]”

ICARUS: More on Attempts to Merge IQ Data with Extracted-Feature Data in Machine Learning

How can we train a neural network to make use of both IQ data samples and CSP features in the context of weak-signal detection?

I’ve been working with some colleagues at Northeastern University (NEU) in Boston, MA, on ways to combine CSP with machine learning. The work I’m doing with Old Dominion University is focused on basic modulation recognition using neural networks and, in particular, the generalization (dataset-shift) problem that is pervasive in deep learning with convolution neural networks. In contrast, the NEU work is focused on specific signal detection and classification problems and looks at how to use multiple disparate data types as inputs to neural-networks; inputs such as complex-valued samples (IQ data) as well as carefully selected components of spectral correlation and spectral coherence surfaces.

My NEU colleagues and I will be publishing a rather lengthy conference paper on a new multi-input-data neural-network approach called ICARUS at InfoCom 2023 this May (My Papers [53]). You can get a copy of the pre-publication version here or on arxiv.org.

Continue reading “ICARUS: More on Attempts to Merge IQ Data with Extracted-Feature Data in Machine Learning”

Correcting the Record: Comments On “Wireless Signal Representation Techniques for Automatic Modulation Classification,” by X. Liu et al

It’s too close to home, and it’s too near the bone …

Park the car at the side of the road
You should know
Time’s tide will smother you…
And I will too

“That Joke Isn’t Funny Anymore” by The Smiths

I applaud the intent behind the paper in this post’s title, which is The Literature [R183], apparently accepted in 2022 for publication in IEEE Access, a peer-reviewed journal. That intent is to list all the found ways in which researchers preprocess radio-frequency data (complex sampled data) prior to applying some sort of modulation classification (recognition) algorithm or system.

The problem is that this attempt at gathering up all of the ‘representations’ gets a lot of the math wrong, and so has a high potential to confuse rather than illuminate.

There’s only one thing to do: correct the record.

Continue reading “Correcting the Record: Comments On “Wireless Signal Representation Techniques for Automatic Modulation Classification,” by X. Liu et al”

Some Concrete Results on Generalization in Modulation Recognition using Machine Learning

Neural networks with I/Q data as input do not generalize in the modulation-recognition problem setting.

Update May 20, 2022: Here is the arxiv.org link.

Back in 2018 I posted a dataset consisting of 112,000 I/Q data files, 32,768 samples in length each, as a part of a challenge to machine learners who had been making strong claims of superiority over signal processing in the area of automatic modulation recognition. One part of the challenge was modulation recognition involving eight digital modulation types, and the other was estimating the carrier frequency offset. That dataset is described here, and I’d like to refer to it as CSPB.ML.2018.

Then in 2022 I posted a companion dataset to CSPB.ML.2018 called CSPB.ML.2022. This new dataset uses the same eight modulation types, similar ranges of SNR, pulse type, and symbol rate, but the random variable that governs the carrier frequency offset is different with respect to the random variable in CSPB.ML.2018. The purpose of the CSPB.ML.2022 dataset is to facilitate studies of the dataset-shift, or generalization, problem in machine learning.

Throughout the past couple of years I’ve been working with some graduate students and a professor at Old Dominion University on merging machine learning and signal processing for problems involving RF signal analysis, such as modulation recognition. We are starting to publish a sequence of papers that describe our efforts. I briefly describe the results of one such paper, My Papers [51], in this post.

Continue reading “Some Concrete Results on Generalization in Modulation Recognition using Machine Learning”

Wow, Elsevier, Just … Wow. Comments On “Cyclic Correntropy: Properties and the Application in Symbol Rate Estimation Under Alpha-Stable Distributed Noise,” by S. Luan et al.

Can we fix peer review in engineering by some form of payment to reviewers?

Let’s talk about another paper about cyclostationarity and correntropy. I’ve critically reviewed two previously, which you can find here and here. When you look at the correntropy as applied to a cyclostationary signal, you get something called cyclic correntropy, which is not particularly useful except if you don’t understand regular cyclostationarity and some aspects of garden-variety signal processing. Then it looks great.

But this isn’t a post that primarily takes the authors of a paper to task, although it does do that. I want to tell the tale to get us thinking about what ‘peer’ could mean, these days, in ‘peer-reviewed paper.’ How do we get the best peers to review our papers?

Let’s take a look at The Literature [R173].

Continue reading “Wow, Elsevier, Just … Wow. Comments On “Cyclic Correntropy: Properties and the Application in Symbol Rate Estimation Under Alpha-Stable Distributed Noise,” by S. Luan et al.”

Update on J. Antoni’s Fast Spectral Correlation Estimator

Let’s take a look at an even faster spectral correlation function estimator. How useful is it for CSP applications in communications?

Reader Gideon pointed out that Antoni had published a paper a year after the paper that I considered in my first Antoni post. This newer paper, The Literature [R172], promises a faster fast spectral correlation estimator, and it delivers on that according to the analysis in the paper. However, I think the faster fast spectral correlation estimator is just as limited as the slower fast spectral correlation estimator when considered in the context of communication-signal processing.

And, to be fair, Antoni doesn’t often consider the context of communication-signal processing. His favored application is fault detection in mechanical systems with rotating parts. But I still don’t think the way he compares his fast and faster estimators to conventional estimators is fair. The reason is that his estimators are both severely limited in the maximum cycle frequency that can be processed, relative to the maximum cycle frequency that is possible.

Let’s take a look.

Continue reading “Update on J. Antoni’s Fast Spectral Correlation Estimator”

Shifted Dataset for the Machine-Learning Challenge: How Well Does a Modulation-Recognition DNN Generalize? [Dataset CSPB.ML.2022]

Another RF-signal dataset to help push along our R&D on modulation recognition.

Update February 2023: A third dataset has been posted to the CSP Blog: CSPB.ML.2023. It features cochannel signals.

Update January 2023: I’m going to put Challenger results in the Comments. I’ve received a Challenger’s decisions and scored them in January 2023. See below.

In this post I provide a second dataset for the Machine-Learning Challenge I issued in 2018 (CSPB.ML.2018). This dataset is similar to the original dataset, but possesses a key difference in that the probability distribution of the carrier-frequency offset parameter, viewed as a random variable, is not the same, but is still realistic.

Blog Note: By WordPress’ count, this is the 100th post on the CSP Blog. Together with a handful of pages (like My Papers and The Literature), these hundred posts have resulted in about 250,000 page views. That’s an average of 2,500 page views per post. However, the variance of the per-post pageviews is quite large. The most popular is The Spectral Correlation Function (> 16,000) while the post More on Pure and Impure Sinewaves, from the same era, has only 316 views. A big Thanks to all my readers!!

Continue reading “Shifted Dataset for the Machine-Learning Challenge: How Well Does a Modulation-Recognition DNN Generalize? [Dataset CSPB.ML.2022]”

The Principal Domain for the Spectral Correlation Function

What are the ranges of spectral frequency and cycle frequency that we need to consider in a discrete-time/discrete-frequency setting for CSP?

Let’s talk about that diamond-shaped region in the (f, \alpha) plane we so often see associated with CSP. I’m talking about the principal domain for the discrete-time/discrete-frequency spectral correlation function. Where does it come from? Why do we care? When does it come up?

Continue reading “The Principal Domain for the Spectral Correlation Function”

J. Antoni’s Fast Spectral Correlation Estimator

The Fast Spectral Correlation estimator is a quick way to find small cycle frequencies. However, its restrictions render it inferior to estimators like the SSCA and FAM.

Update 2023: I continue with critical analysis of Antoni’s work as applied to ‘using and understanding the statistics of communication signals‘ in a follow-on post.

In this post we take a look at an alternative CSP estimator created by J. Antoni et al (The Literature [R152]). The paper describing the estimator can be found here, and you can get some corresponding MATLAB code, posted by the authors, here if you have a Mathworks account.

Continue reading “J. Antoni’s Fast Spectral Correlation Estimator”

SPTK (and CSP): Random Processes

The merging of conventional probability theory with signal theory leads to random processes, also known as stochastic processes. The ideas involved with random processes are central to cyclostationary signal processing.

Previous SPTK Post: Examples of Random Variables Next SPTK Post: The Sampling Theorem

In this Signal Processing ToolKit post, I provide an introduction to the concept and use of random processes (also called stochastic processes). This is my perspective on random processes, so although I’ll introduce and use the conventional concepts of stationarity and ergodicity, I’ll end up focusing on the differences between stationary and cyclostationary random processes. The goal is to illustrate those differences with informative graphics and videos; to build intuition in the reader about how the cyclostationarity property comes about, and about how the property relates to the more abstract mathematical object of a random process on one hand and to the concrete data-centric signal on the other.

So … this is the first SPTK post that is also a CSP post.

Continue reading “SPTK (and CSP): Random Processes”

Desultory CSP: More Signals from SigIDWiki.com

More real-world data files from SigIDWiki.com. The range of spectral correlation function types exhibited by man-made RF signals is vast.

Let’s look at a few more signals posted to sigidwiki.com. Just for fun.

Continue reading “Desultory CSP: More Signals from SigIDWiki.com”

Zero-Padding in Spectral Correlation Estimators

Why does zero-padding help in various estimators of the spectral correlation and spectral coherence functions?

Update to the exchange: May 7, 2021. May 14, 2021.

Reader Clint posed a great question about zero-padding in the frequency-smoothing method (FSM) of spectral correlation function estimation. The question prompted some pondering on my part, and I went ahead and did some experiments with the FSM to illustrate my response to Clint. The exchange with Clint (ongoing!) was deep and detailed enough that I thought it deserved to be seen by other CSP-Blog readers. One of the problems with developing material, or refining explanations, in the Comments sections of the CSP Blog is that these sections are not nearly as visible in the navigation tools featured on the Blog as are the Posts and Pages.

Continue reading “Zero-Padding in Spectral Correlation Estimators”

Cyclostationarity of DMR Signals

Let’s take a brief look at the cyclostationarity of a captured DMR signal. It’s more complicated than one might think.

In this post I look at the cyclostationarity of a digital mobile radio (DMR) signal empirically. That is, I have a captured DMR signal from sigidwiki.com, and I apply blind CSP to it to determine its cycle frequencies and spectral correlation function. The signal is arranged in frames or slots, with gaps between successive slots, so there is the chance that we’ll see cyclostationarity due to the on-burst (or on-frame) signaling and cyclostationarity due to the framing itself.

Continue reading “Cyclostationarity of DMR Signals”

Are Probability Density Functions “Engineered” or “Hand-Crafted” Features?

The Machine Learners think that their “feature engineering” (rooting around in voluminous data) is the same as “features” in mathematically derived signal-processing algorithms. I take a lighthearted look.

One of the things the machine learners never tire of saying is that their neural-network approach to classification is superior to previous methods because, in part, those older methods use hand-crafted features. They put it in different ways, but somewhere in the introductory section of a machine-learning modulation-recognition paper (ML/MR), you’ll likely see the claim. You can look through the ML/MR papers I’ve cited in The Literature ([R133]-[R146]) if you are curious, but I’ll extract a couple here just to illustrate the idea.

Continue reading “Are Probability Density Functions “Engineered” or “Hand-Crafted” Features?”