SPTK: Ideal Filters

Ideal filters have rectangular or unit-step-like transfer functions and so are not physical. But they permit much insight into the analysis and design of real-world linear systems.

Previous SPTK Post: Convolution       Next SPTK Post: The Moving-Average Filter

We continue with our non-CSP signal-processing tool-kit series with this post on ideal filtering. Ideal filters are those filters with transfer functions that are rectangular, step-function-like, or combinations of rectangles and step functions.

Continue reading “SPTK: Ideal Filters”

SPTK: Convolution and the Convolution Theorem

Convolution is an essential element in everyone’s signal-processing toolkit. We’ll look at it in detail in this post.

Previous SPTK Post: Interconnection of Linear Systems      Next SPTK Post: Ideal Filters

This installment of the Signal Processing Toolkit series of CSP Blog posts deals with the ubiquitous signal-processing operation known as convolution. We originally came across it in the context of linear time-invariant systems. In this post, we focus on the mechanics of computing convolutions and discuss their utility in signal processing and CSP.

Continue reading “SPTK: Convolution and the Convolution Theorem”

SPTK: Interconnection of Linear Systems

Real-world signal-processing systems often combine multiple kinds of linear time-invariant systems. We look here at the general kinds of connections.

Previous Post: Frequency Response Next Post: Convolution

It is often the case that linear time invariant (or for discrete-time systems, linear shift invariant) systems are connected together in various ways, so that the output of one may be the input to another, or two or more systems may share the same input. In such cases we can often find an equivalent system impulse response that takes into account all the component systems. In this post we focus on the serial and parallel connections of LTI systems in both the time and frequency domains.

Continue reading “SPTK: Interconnection of Linear Systems”