DeepSig’s 2018 Data Set: 2018.01.OSC.0001_1024x2M.h5.tar.gz

DeepSig’s data sets are popular in the machine-learning modulation-recognition community, and in that community there are many claims that the deep neural networks are vastly outperforming any expertly hand-crafted tired old conventional method you care to name (none are usually named though). So I’ve been looking under the hood at these data sets to see what the machine learners think of as high-quality inputs that lead to disruptive upending of the sclerotic mod-rec establishment. In previous posts, I’ve looked at two of the most popular DeepSig data sets from 2016 (here and here). In this post, we’ll look at one more and I will then try to get back to the CSP posts.

Let’s take a look at one more DeepSig data set: 2018.01.OSC.0001_1024x2M.h5.tar.gz.

Continue reading “DeepSig’s 2018 Data Set: 2018.01.OSC.0001_1024x2M.h5.tar.gz”

Simple Synchronization Using CSP

In this post I discuss the use of cyclostationary signal processing applied to communication-signal synchronization problems. First, just what are synchronization problems? Synchronize and synchronization have multiple meanings, but the meaning of synchronize that is relevant here is something like:

syn·chro·nize: To cause to occur or operate with exact coincidence in time or rate

If we have an analog amplitude-modulated (AM) signal (such as voice AM used in the AM broadcast bands) at a receiver we want to remove the effects of the carrier sine wave, resulting in an output that is only the original voice or music message. If we have a digital signal such as binary phase-shift keying (BPSK), we want to remove the effects of the carrier but also sample the message signal at the correct instants to optimally recover the transmitted bit sequence. 

Continue reading “Simple Synchronization Using CSP”

Cyclostationarity of Digital QAM and PSK

Let’s look into the statistical properties of a class of textbook signals that encompasses digital quadrature amplitude modulation (QAM), phase-shift keying (PSK), and pulse-amplitude modulation (PAM). I’ll call the class simply digital QAM (DQAM), and all of its members have an analytical-signal mathematical representation of the form

\displaystyle s(t) = \sum_{k=-\infty}^\infty a_k p(t - kT_0 - t_0) e^{i2\pi f_0 t + i \phi_0}. \hfill  (1)

In this model, k is the symbol index, 1/T_0 = f_{sym} is the symbol rate, f_0 is the carrier frequency (sometimes called the frequency offset), t_0 is the symbol-clock phase, and \phi_0 is the carrier phase. The finite-energy function p(t) is the pulse function (sometimes called the pulse-shaping function). Finally, the random variable a_k is called the symbol, and has a discrete distribution that is called the constellation.

Model (1) is a textbook signal when the sequence of symbols is independent and identically distributed (IID). This condition rules out real-world communication aids such as periodically transmitted bursts of known symbols, adaptive modulation (where the constellation may change in response to the vagaries of the propagation channel), some forms of coding, etc. Also, when the pulse function p(t) is a rectangle (with width T_0), the signal is even less realistic, and therefore more textbook.

We will look at the moments and cumulants of this general model in this post. Although the model is textbook, we could use it as a building block to form more realistic, less textbooky, signal models. Then we could find the cyclostationarity of those models by applying signal-processing transformation rules that define how the cumulants of the output of a signal processor relate to those for the input.

Continue reading “Cyclostationarity of Digital QAM and PSK”

Conjugation Configurations

When we considered complex-valued signals and second-order statistics, we ended up with two kinds of parameters: non-conjugate and conjugate. So we have the non-conjugate autocorrelation, which is the expected value of the normal second-order lag product in which only one of the factors is conjugated (consistent with the normal definition of variance for complex-valued random variables),

\displaystyle R_x(t, \boldsymbol{\tau}) = E \left[ x(t+\tau_1)x^*(t+\tau_2) \right] \hfill (1)

and the conjugate autocorrelation, which is the expected value of the second-order lag product in which neither factor is conjugated

\displaystyle R_{x^*}(t, \boldsymbol{\tau}) = E \left[ x(t+\tau_1)x(t+\tau_2) \right]. \hfill (2)

The complex-valued Fourier-series amplitudes of these functions of time t are the non-conjugate and conjugate cyclic autocorrelation functions, respectively.

The Fourier transforms of the non-conjugate and conjugate cyclic autocorrelation functions are the non-conjugate and conjugate spectral correlation functions, respectively.

I never explained why both the non-conjugate and conjugate functions are needed. In this post, I rectify that omission. The reason for the many different choices of conjugated factors in higher-order cyclic moments and cumulants is also provided.

Continue reading “Conjugation Configurations”