What is the Minimum Effort Required to Find ‘Related Work?’: Comments on Some Spectrum-Sensing Literature by N. West [R176] and T. Yucek [R178]

Starts as a personal gripe, but ends with weird stuff from the literature.

During my poking around on arxiv.org the other day (Grrrrr…), I came across some postings by O’Shea et al I’d not seen before, including The Literature [R176]: “Wideband Signal Localization and Spectral Segmentation.”

Huh, I thought, they are probably trying to train a neural network to do automatic spectral segmentation that is superior to my published algorithm (My Papers [32]). Yeah, no. I mean yes to a machine, no to nods to me. Let’s take a look.

Continue reading “What is the Minimum Effort Required to Find ‘Related Work?’: Comments on Some Spectrum-Sensing Literature by N. West [R176] and T. Yucek [R178]”

Elegy for a Dying Field: Comments on “Detection of Direct Sequence Spread Spectrum Signals Based on Deep Learning,” by F. Wei et al

Black-box thinking is degrading our ability to connect effects to causes.

I’m learning, slowly because I’m stubborn and (I know it is hard to believe) optimistic, that there is no bottom. Signal processing and communications theory and practice are being steadily degraded in the world’s best (and worst of course) peer-reviewed journals.

I saw the accepted paper in the post title (The Literature [R177]) and thought this could be better than most of the machine-learning modulation-recognition papers I’ve reviewed. It takes a little more effort to properly understand and generate direct-sequence spread-spectrum (DSSS) signals, and the authors will likely focus on the practical case where the inband SNR is low. Plus there are lots of connections to CSP. But no. Let’s take a look.

Continue reading “Elegy for a Dying Field: Comments on “Detection of Direct Sequence Spread Spectrum Signals Based on Deep Learning,” by F. Wei et al”

Some Concrete Results on Generalization in Modulation Recognition using Machine Learning

Neural networks with I/Q data as input do not generalize in the modulation-recognition problem setting.

Update May 20, 2022: Here is the arxiv.org link.

Back in 2018 I posted a dataset consisting of 112,000 I/Q data files, 32,768 samples in length each, as a part of a challenge to machine learners who had been making strong claims of superiority over signal processing in the area of automatic modulation recognition. One part of the challenge was modulation recognition involving eight digital modulation types, and the other was estimating the carrier frequency offset. That dataset is described here, and I’d like to refer to it as CSPB.ML.2018.

Then in 2022 I posted a companion dataset to CSPB.ML.2018 called CSPB.ML.2022. This new dataset uses the same eight modulation types, similar ranges of SNR, pulse type, and symbol rate, but the random variable that governs the carrier frequency offset is different with respect to the random variable in CSPB.ML.2018. The purpose of the CSPB.ML.2022 dataset is to facilitate studies of the dataset-shift, or generalization, problem in machine learning.

Throughout the past couple of years I’ve been working with some graduate students and a professor at Old Dominion University on merging machine learning and signal processing for problems involving RF signal analysis, such as modulation recognition. We are starting to publish a sequence of papers that describe our efforts. I briefly describe the results of one such paper, My Papers [51], in this post.

Continue reading “Some Concrete Results on Generalization in Modulation Recognition using Machine Learning”

A Great American Science Writer: Lee Smolin

While reading a book on string theory for lay readers, I did a double take…

I don’t know why I haven’t read any of Lee Smolin’s physics books prior to this year, but I haven’t. Maybe blame my obsession with Sean Carroll. In any case, I’ve been reading The Trouble with Physics (The Literature [R175]), which is about string theory and string theorists. Smolin finds it troubling that the string theorist subculture in physics shows some signs of groupthink and authoritarianism. Perhaps elder worship too.

I came across this list of attributes, conceived by Smolin, of the ‘sociology’ of the string-theorist contingent:

Continue reading “A Great American Science Writer: Lee Smolin”

Wow, Elsevier, Just … Wow. Comments On “Cyclic Correntropy: Properties and the Application in Symbol Rate Estimation Under Alpha-Stable Distributed Noise,” by S. Luan et al.

Can we fix peer review in engineering by some form of payment to reviewers?

Let’s talk about another paper about cyclostationarity and correntropy. I’ve critically reviewed two previously, which you can find here and here. When you look at the correntropy as applied to a cyclostationary signal, you get something called cyclic correntropy, which is not particularly useful except if you don’t understand regular cyclostationarity and some aspects of garden-variety signal processing. Then it looks great.

But this isn’t a post that primarily takes the authors of a paper to task, although it does do that. I want to tell the tale to get us thinking about what ‘peer’ could mean, these days, in ‘peer-reviewed paper.’ How do we get the best peers to review our papers?

Let’s take a look at The Literature [R173].

Continue reading “Wow, Elsevier, Just … Wow. Comments On “Cyclic Correntropy: Properties and the Application in Symbol Rate Estimation Under Alpha-Stable Distributed Noise,” by S. Luan et al.”

Update on J. Antoni’s Fast Spectral Correlation Estimator

Let’s take a look at an even faster spectral correlation function estimator. How useful is it for CSP applications in communications?

Reader Gideon pointed out that Antoni had published a paper a year after the paper that I considered in my first Antoni post. This newer paper, The Literature [R172], promises a faster fast spectral correlation estimator, and it delivers on that according to the analysis in the paper. However, I think the faster fast spectral correlation estimator is just as limited as the slower fast spectral correlation estimator when considered in the context of communication-signal processing.

And, to be fair, Antoni doesn’t often consider the context of communication-signal processing. His favored application is fault detection in mechanical systems with rotating parts. But I still don’t think the way he compares his fast and faster estimators to conventional estimators is fair. The reason is that his estimators are both severely limited in the maximum cycle frequency that can be processed, relative to the maximum cycle frequency that is possible.

Let’s take a look.

Continue reading “Update on J. Antoni’s Fast Spectral Correlation Estimator”

One Last Time …

We take a quick look at a fourth DeepSig dataset called 2016.04C.multisnr.tar.bz2 in the context of the data-shift problem in machine learning.

And if we get this right,

We’re gonna teach ’em how to say

Goodbye …

You and I.

Lin-Manuel Miranda, “One Last Time,” Hamilton

I didn’t expect to have to do this, but I am going to analyze yet another DeepSig dataset. One last time. This one is called 2016.04C.multisnr.tar.bz2, and is described thusly on the DeepSig website:

Figure 1. Description of various DeepSig data sets found on the DeepSig website as of November 2021.

I’ve analyzed the 2018 dataset here, the RML2016.10b.tar.bz2 dataset here, and the RML2016.10a.tar.bz2 dataset here.

Now I’ve come across a manuscript-in-review in which both the RML2016.10a and RML2016.04c data sets are used. The idea is that these two datasets represent two sufficiently distinct datasets so that they are good candidates for use in a data-shift study involving trained neural-network modulation-recognition systems.

The data-shift problem is, as one researcher puts it:

Data shift or data drift, concept shift, changing environments, data fractures are all similar terms that describe the same phenomenon: the different distribution of data between train and test sets

Georgios Sarantitis

But … are they really all that different?

Continue reading “One Last Time …”

Comments on “Proper Definition and Handling of Dirac Delta Functions” by C. Candan.

An interesting paper on the true nature of the impulse function we use so much in signal processing.

The impulse function, also called the Dirac delta function, is commonly used in statistical signal processing, and on the CSP Blog (examples: representations and transforms). I think we’re a bit casual about this usage, and perhaps none of us understand impulses as well as we might.

Enter C. Candan and The Literature [R155].

Continue reading “Comments on “Proper Definition and Handling of Dirac Delta Functions” by C. Candan.”

Wave Walker DSP: A New Kind of Engineering Blog

A colleague has started up a website with lots of content on digital signal processing: Wave Walker DSP. This is, to me, a new kind of engineering blog in that it blends DSP mathematics and practice with philosophy. That’s an intriguing complement to my engineering blog, which I view as blending DSP mathematics with criticism.

Continue reading “Wave Walker DSP: A New Kind of Engineering Blog”

J. Antoni’s Fast Spectral Correlation Estimator

The Fast Spectral Correlation estimator is a quick way to find small cycle frequencies. However, its restrictions render it inferior to estimators like the SSCA and FAM.

In this post we take a look at an alternative CSP estimator created by J. Antoni et al (The Literature [R152]). The paper describing the estimator can be found here, and you can get some corresponding MATLAB code, posted by the authors, here if you have a Mathworks account.

Continue reading “J. Antoni’s Fast Spectral Correlation Estimator”

The Signal-Processing Equivalent of Resume-Padding? Comments on “A Robust Modulation Classification Method Using Convolutional Neural Networks” by S. Zhou et al.

Does the use of ‘total SNR’ mislead when the fractional bandwidth is very small? What constitutes ‘weak-signal processing?’

Or maybe “Comments on” here should be “Questions on.”

In a recent paper in EURASIP Journal on Advances in Signal Processing (The Literature [R165]), the authors tackle the problem of machine-learning-based modulation recognition for highly oversampled rectangular-pulse digital signals. They don’t use the DeepSig data sets, but their data-set description and use of ‘signal-to-noise ratio’ leaves a lot to be desired. Let’s take a brief look. See if you agree with me that the touting of their results as evidence that they can reliably classify signals with ‘SNRs of -10 dB’ is unwarranted and misleading.

Continue reading “The Signal-Processing Equivalent of Resume-Padding? Comments on “A Robust Modulation Classification Method Using Convolutional Neural Networks” by S. Zhou et al.”

Comments on “Deep Neural Network Feature Designs for RF Data-Driven Wireless Device Classification,” by B. Hamdaoui et al

Another post-publication review of a paper that is weak on the ‘RF’ in RF machine learning.

Let’s take a look at a recently published paper (The Literature [R148]) on machine-learning-based modulation-recognition to get a data point on how some electrical engineers–these are more on the side of computer science I believe–use mathematics when they turn to radio-frequency problems. You can guess it isn’t pretty, and that I’m not here to exalt their acumen.

Continue reading “Comments on “Deep Neural Network Feature Designs for RF Data-Driven Wireless Device Classification,” by B. Hamdaoui et al”

Are Probability Density Functions “Engineered” or “Hand-Crafted” Features?

The Machine Learners think that their “feature engineering” (rooting around in voluminous data) is the same as “features” in mathematically derived signal-processing algorithms. I take a lighthearted look.

One of the things the machine learners never tire of saying is that their neural-network approach to classification is superior to previous methods because, in part, those older methods use hand-crafted features. They put it in different ways, but somewhere in the introductory section of a machine-learning modulation-recognition paper (ML/MR), you’ll likely see the claim. You can look through the ML/MR papers I’ve cited in The Literature ([R133]-[R146]) if you are curious, but I’ll extract a couple here just to illustrate the idea.

Continue reading “Are Probability Density Functions “Engineered” or “Hand-Crafted” Features?”

Stationary Signal Models Versus Cyclostationary Signal Models

What happens when a cyclostationary time-series is treated as if it were stationary?

In this post let’s consider the difference between modeling a communication signal as stationary or as cyclostationary.

There are two contexts for this kind of issue. The first is when someone recognizes that a particular signal model is cyclostationary, and then takes some action to render it stationary (sometimes called ‘stationarizing the signal’). They then proceed with their analysis or algorithm development using the stationary signal model. The second context is when someone applies stationary-signal processing to a cyclostationary signal model, either without knowing that the signal is cyclostationary, or perhaps knowing but not caring.

At the center of this topic is the difference between the mathematical object known as a random process (or stochastic process) and the mathematical object that is a single infinite-time function (or signal or time-series).

A related paper is The Literature [R68], which discusses the pitfalls of applying tools meant for stationary signals to the samples of cyclostationary signals.

Continue reading “Stationary Signal Models Versus Cyclostationary Signal Models”

DeepSig’s 2018 Data Set: 2018.01.OSC.0001_1024x2M.h5.tar.gz

The third DeepSig data set I’ve examined. It’s better!

Update February 2021. I added material relating to the DeepSig-claimed variation of the roll-off parameter in a square-root raised-cosine pulse-shaping function. It does not appear that the roll-off was actually varied as stated in Table I of [R137].

DeepSig’s data sets are popular in the machine-learning modulation-recognition community, and in that community there are many claims that the deep neural networks are vastly outperforming any expertly hand-crafted tired old conventional method you care to name (none are usually named though). So I’ve been looking under the hood at these data sets to see what the machine learners think of as high-quality inputs that lead to disruptive upending of the sclerotic mod-rec establishment. In previous posts, I’ve looked at two of the most popular DeepSig data sets from 2016 (here and here). In this post, we’ll look at one more and I will then try to get back to the CSP posts.

Let’s take a look at one more DeepSig data set: 2018.01.OSC.0001_1024x2M.h5.tar.gz.

Continue reading “DeepSig’s 2018 Data Set: 2018.01.OSC.0001_1024x2M.h5.tar.gz”

More on DeepSig’s RML Data Sets

The second DeepSig data set I analyze: SNR problems and strange PSDs.

I presented an analysis of one of DeepSig’s earlier modulation-recognition data sets (RML2016.10a.tar.bz2) in the post on All BPSK Signals. There we saw several flaws in the data set as well as curiosities. Most notably, the signals in the data set labeled as analog amplitude-modulated single sideband (AM-SSB) were absent: these signals were only noise. DeepSig has several other data sets on offer at the time of this writing:

In this post, I’ll present a few thoughts and results for the “Larger Version” of RML2016.10a.tar.bz2, which is called RML2016.10b.tar.bz2. This is a good post to offer because it is coherent with the first RML post, but also because more papers are being published that use the RML 10b data set, and of course more such papers are in review. Maybe the offered analysis here will help reviewers to better understand and critique the machine-learning papers. The latter do not ever contain any side analysis or validation of the RML data sets (let me know if you find one that does in the Comments below), so we can’t rely on the machine learners to assess their inputs. (Update: I analyze a third DeepSig data set here. And a fourth and final one here.)

Continue reading “More on DeepSig’s RML Data Sets”

All BPSK Signals

An analysis of DeepSig’s 2016.10A data set, used in many published machine-learning papers, and detailed comments on quite a few of those papers.

Update March 2021

See my analyses of three other DeepSig datasets here, here, and here.

Update June 2020

I’ll be adding new papers to this post as I find them. At the end of the original post there is a sequence of date-labeled updates that briefly describe the relevant aspects of the newly found papers. Some machine-learning modulation-recognition papers deserve their own post, so check back at the CSP Blog from time-to-time for “Comments On …” posts.

Continue reading “All BPSK Signals”

Professor Jang Again Tortures CSP Mathematics Until it Breaks

In which my life is made a little harder.

We first met Professor Jang in a “Comments on the Literature” type of post from 2016. In that post, I pointed out fundamental mathematical errors contained in a paper the Professor published in the IEEE Communications Letters in 2014 (The Literature [R71]).

I have just noticed a new paper by Professor Jang, published in the journal IEEE Access, which is a peer-reviewed journal, like the Communications Letters. This new paper is titled “Simultaneous Power Harvesting and Cyclostationary Spectrum Sensing in Cognitive Radios” (The Literature [R144]). Many of the same errors are present in this paper. In fact, the beginning of the paper, and the exposition on cyclostationary signal processing is nearly the same as in The Literature [R71].

Let’s take a look.

Continue reading “Professor Jang Again Tortures CSP Mathematics Until it Breaks”

CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano

My friend and colleague Antonio Napolitano has just published a new book on cyclostationary signals and cyclostationary signal processing:

Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations, Academic Press/Elsevier, 2020, ISBN: 978-0-08-102708-0. The book is a comprehensive guide to the structure of cyclostationary random processes and signals, and it also provides pointers to the literature on many different applications. The book is mathematical in nature; use it to deepen your understanding of the underlying mathematics that make CSP possible.

You can check out the book on amazon.com using the following link:

Cyclostationary Processes and Time Series

Continue reading “CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano”

On Impulsive Noise, CSP, and Correntropy

And I still don’t understand how a random variable with infinite variance can be a good model for anything physical. So there.

I’ve seen several published and pre-published (arXiv.org) technical papers over the past couple of years on the topic of cyclic correntropy (The Literature [R123-R127]). I first criticized such a paper ([R123]) here, but the substance of that review was about my problems with the presented mathematics, not impulsive noise and its effects on CSP. Since the papers keep coming, apparently, I’m going to put down some thoughts on impulsive noise and some evidence regarding simple means of mitigation in the context of CSP. Preview: I don’t think we need to go to the trouble of investigating cyclic correntropy as a means of salvaging CSP from the evil clutches of impulsive noise.

Continue reading “On Impulsive Noise, CSP, and Correntropy”