Another post-publication review of a paper that is weak on the ‘RF’ in RF machine learning.

Let’s take a look at a recently published paper (The Literature [R148]) on machine-learning-based modulation-recognition to get a data point on how some electrical engineers–these are more on the side of computer science I believe–use mathematics when they turn to radio-frequency problems. You can guess it isn’t pretty, and that I’m not here to exalt their acumen.

Spectral correlation surfaces for real-valued and complex-valued versions of the same signal look quite different.

In the real world, the electromagnetic field is a multi-dimensional time-varying real-valued function (volts/meter or newtons/coulomb). But in mathematical physics and signal processing, we often use complex-valued representations of the field, or of quantities derived from it, to facilitate our mathematics or make the signal processing more compact and efficient.

So throughout the CSP Blog I’ve focused almost exclusively on complex-valued signals and data. However, there is a considerable older literature that uses real-valued signals, such as The Literature [R1, R151]. You can use either real-valued or complex-valued signal representations and data, as you prefer, but there are advantages and disadvantages to each choice. Moreover, an author might not be perfectly clear about which one is used, especially when presenting a spectral correlation surface (as opposed to a sequence of equations, where things are often more clear).

We first met Professor Jang in a “Comments on the Literature” type of post from 2016. In that post, I pointed out fundamental mathematical errors contained in a paper the Professor published in the IEEE Communications Letters in 2014 (The Literature [R71]).

I have just noticed a new paper by Professor Jang, published in the journal IEEE Access, which is a peer-reviewed journal, like the Communications Letters. This new paper is titled “Simultaneous Power Harvesting and Cyclostationary Spectrum Sensing in Cognitive Radios” (The Literature [R144]). Many of the same errors are present in this paper. In fact, the beginning of the paper, and the exposition on cyclostationary signal processing is nearly the same as in The Literature [R71].

There are some situations in which the spectral correlation function is not the preferred measure of (second-order) cyclostationarity. In these situations, the cyclic autocorrelation (non-conjugate and conjugate versions) may be much simpler to estimate and work with in terms of detector, classifier, and estimator structures. So in this post, I’m going to provide plots of the cyclic autocorrelation for each of the signals in the spectral correlation gallery post. The exceptions are those signals I called feature-rich in the spectral correlation gallery post, such as LTE and radar. Recall that such signals possess a large number of cycle frequencies, and plotting their three-dimensional spectral correlation surface is not helpful as it is difficult to interpret with the human eye. So for the cycle-frequency patterns of feature-rich signals, we’ll rely on the stem-style (cyclic-domain profile) plots that I used in the gallery post.

What modest academic success I’ve had in the area of cyclostationary signal theory and cyclostationary signal processing is largely due to the patient mentorship of my doctoral adviser, William (Bill) Gardner, and the fact that I was able to build on an excellent foundation put in place by Gardner, his advisor Lewis Franks, and key Gardner students such as William (Bill) Brown.

The statistics-oriented wing of electrical engineering is perpetually dazzled by [insert Revered Person]’s Theorem at the expense of, well, actual engineering.

I recently came across the conference paper in the post title (The Literature [R101]). Let’s take a look.

The paper is concerned with “detect[ing] the presence of ACS signals with unknown cycle period.” In other words, blind cyclostationary-signal detection and cycle-frequency estimation. Of particular importance to the authors is the case in which the “period of cyclostationarity” is not equal to an integer number of samples. They seem to think this is a new and difficult problem. By my lights, it isn’t. But maybe I’m missing something. Let me know in the Comments.

An alternative to the strip spectral correlation analyzer.

Let’s look at another spectral correlation function estimator: the FFT Accumulation Method (FAM). This estimator is in the time-smoothing category, is exhaustive in that it is designed to compute estimates of the spectral correlation function over its entire principal domain, and is efficient, so that it is a competitor to the Strip Spectral Correlation Analyzer (SSCA) method. I implemented my version of the FAM by using the paper by Roberts et al (The Literature [R4]). If you follow the equations closely, you can successfully implement the estimator from that paper. The tricky part, as with the SSCA, is correctly associating the outputs of the coded equations to their proper values.

To help new readers, I’m supplying here links to the posts that have gotten the most attention over the lifetime of the Blog. Omitted from this list are the more esoteric topics as well as most of the posts that comment on the engineering literature.

Please consider donating to the CSP Blog to keep it ad-free and to support the addition of major new features. The small box below is used to specify the number of $5 donations.

$5.00

You can see a pre-publication version of my latest CSP journal paper, on “tunneling”, here.

We are all susceptible to using bad mathematics to get us where we want to go. Here is an example.

I recently came across the 2014 paper in the title of this post. I mentioned it briefly in the post on the periodogram. But I’m going to talk about it a bit more here because this is the kind of thing that makes things harder for people trying to learn about cyclostationarity, which eventually leads to the need for something like the CSP Blog as a corrective.

The idea behind the paper is that it would be nice to avoid the need for prior knowledge of cycle frequencies when using cycle detectors or the like. If you could just compute the entire spectral correlation function, then collapse it by integrating (summing) over frequency , then you’d have a one-dimensional function of cycle frequency and you could then process that function inexpensively to perform detection and classification tasks.

The periodogram is the scaled magnitude-squared finite-time Fourier transform of something. It is as random as its input–it never converges to the power spectrum.

I’ve been reviewing a lot of technical papers lately and I’m noticing that it is becoming common to assert that the limiting form of the periodogram is the power spectral density or that the limiting form of the cyclic periodogram is the spectral correlation function. This isn’t true. These functions do not become, in general, less random (erratic) as the amount of data that is processed increases without limit. On the contrary, they always have large variance. Some form of averaging (temporal or spectral) is needed to permit the periodogram to converge to the power spectrum or the cyclic periodogram to converge to the spectral correlation function (SCF).

In particular, I’ve been seeing things like this:

where is the Fourier transform of on . In other words, the usual cyclic periodogram we talk about here on the CSP blog. See, for example, The Literature [R71], Equation (3).

The SSCA is a good tool for blind (no prior information) exhaustive (all cycle frequencies) spectral correlation analysis. An alternative is the FFT accumulation method.

In this post I present a very useful blind cycle-frequency estimator known in the literature as the strip spectral correlation analyzer (SSCA) (The Literature [R3-R5]). We’ve covered the basics of the frequency-smoothing method (FSM) and the time-smoothing method (TSM) of estimating the spectral correlation function (SCF) in previous posts. The TSM and FSM are efficient estimators of the SCF when it is desired to estimate it for one or a few cycle frequencies (CFs). The SSCA, on the other hand, is efficient when we want to estimate the SCF for all CFs.

Use this post to help check the accuracy of your second-order CSP estimators.

In this post I provide some tools for the do-it-yourself CSP practitioner. One of the goals of this blog is to help new CSP researchers and students to write their own estimators and algorithms. This post contains some spectral correlation function and cyclic autocorrelation function estimates and numerically evaluated formulas that can be compared to those produced by anybody’s code.

The signal of interest is, of course, our rectangular-pulse BPSK signal with symbol rate (normalized frequency units) and carrier offset . You can download a MATLAB script for creating such a signal here.

The formula for the SCF for a textbook BPSK signal is published in several places (The Literature [R47], My Papers [6]) and depends mainly on the Fourier transform of the pulse function used by the textbook signal.

We’ll compare the numerically evaluated spectral correlation formula with estimates produced by my version of the frequency-smoothing method (FSM). The FSM estimates and the theoretical functions are contained in a MATLAB mat file here. (I had to change the extension of the mat file from .mat to .doc to allow posting it to WordPress–change it back after downloading.) In all the results shown here and that you can download, the processed data-block length is samples and the FSM smoothing width is Hz. A rectangular smoothing window is used. For all cycle frequencies except zero (non-conjugate), a zero-padding factor of two is used in the FSM.

For the cyclic autocorrelation, we provide estimates using two methods: inverse Fourier transformation of the spectral correlation estimate and direct averaging of the second-order lag product in the time domain.

Pictures are worth N words, and M equations, where N and M are large integers.

In this post I provide plots of the spectral correlation for a variety of simulated textbook signals and several collected communication signals. The plots show the variety of cycle-frequency patterns that arise from the disparate approaches to digital communication signaling. The distinguishability of these patterns, combined with the inability to distinguish based on the power spectrum, leads to a powerful set of classification (modulation recognition) features (My Papers [16, 25, 26, 28]).

In all cases, the cycle frequencies are blindly estimated by the strip spectral correlation analyzer (The Literature [R3, R4]) and the estimates used by the FSM to compute the spectral correlation function. MATLAB is then used to plot the magnitude of the spectral correlation and conjugate spectral correlation, as specified by the determined non-conjugate and conjugate cycle frequencies.

There are three categories of signal types in this gallery: textbook signals, collected signals, and feature-rich signals. The latter comprises some collected signals (e.g., LTE) and some simulated radar signals. For the first two signal categories, the three-dimensional surface plots I’ve been using will suffice for illustrating the cycle-frequency patterns and the behavior of the spectral correlation function over frequency. But for the last category, the number of cycle frequencies is so large that the three-dimensional surface is difficult to interpret–it is a visual mess. For these signals, I’ll plot the maximum spectral correlation magnitude over spectral frequency versus the detected cycle frequency (as in this post).

The non-blind spectral-correlation estimator called the TSM is favored when one wishes to avoid long FFTs.

In a previous post, we introduced the frequency-smoothing method (FSM) of spectral correlation function (SCF) estimation. The FSM convolves a pulse-like smoothing window with the cyclic periodogram to form an estimate of the SCF. An advantage of the method is that is allows fine control over the spectral resolution of the SCF estimate through the choice of , but the drawbacks are that it requires a Fourier transform as long as the data-record undergoing processing, and the convolution can be expensive. However, the expense of the convolution can be mitigated by using rectangular .

In this post, we introduce the time-smoothing method (TSM) of SCF estimation. Instead of averaging (smoothing) the cyclic periodogram over spectral frequency, multiple cyclic periodograms are averaged over time. When the non-conjugate cycle frequency of zero is used, this method produces an estimate of the power spectral density, and is essentially the Bartlett spectrum estimation method. The TSM can be found in My Papers [6] (Eq. (54)), and other places in the literature.

The non-blind spectral-correlation estimator called the FSM is favored when one wishes to have fine control over frequency resolution and can tolerate long FFTs.

In this post I describe a basic estimator for the spectral correlation function (SCF): the frequency-smoothing method (FSM). The FSM is a way to estimate the SCF for a single value of cycle frequency. Recall from the basic theory of the cyclic autocorrelation and SCF that the SCF is obtained by infinite-time averaging of the cyclic periodogram or by infinitesimal-resolution frequency averaging of the cyclic periodogram. The FSM is merely a finite-time/finite-resolution approximation to the SCF definition.

One place the FSM can be found is in (My Papers [6]), where I introduce time-smoothed and frequency-smoothed higher-order cyclic periodograms as estimators of the cyclic polyspectrum. When the cyclic polyspectrum order is set to , the cyclic polyspectrum becomes the spectral correlation function, so the FSM discussed in this post is just a special case of the more general estimator in [6, Section VI.B].

We can estimate the spectral correlation function of one signal in the presence of another with complete temporal and spectral overlap provided the signal has a unique cycle frequency.

In this post I describe and illustrate the most important property of cyclostationary statistics: signal selectivity. The idea is that the cyclostationary parameters for a single signal can be estimated for that signal even when it is corrupted by strong noise and cochannel interferers. ‘Cochannel’ means that the interferer occupies a frequency band that partially or completely overlaps the frequency band for the signal of interest.

A mixture of received RF signals, whether cochannel or not, is accurately modeled by the simple sum of the signals, as in

where is additive noise. We can write this more compactly as

Spectral correlation in CSP means that distinct narrowband spectral components of a signal are correlated-they contain either identical information or some degree of redundant information.

Spectral correlation is perhaps the most widely used characterization of the cyclostationarity property. The main reason is that the computational efficiency of the FFT can be harnessed to characterize the cyclostationarity of a given signal or data set in an efficient manner. And not just efficient, but with a reasonable total computational cost, so that one doesn’t have to wait too long for the result.

Just as the normal power spectrum is actually the power spectral density, or more accurately, the spectral density of time-averaged power (or simply the variance when the mean is zero), the spectral correlation function is the spectral density of time-averaged correlation (covariance). What does this mean? Consider the following schematic showing two narrowband spectral components of an arbitrary signal:

Let’s define narrowband spectral component to mean the output of a bandpass filter applied to a signal, where the bandwidth of the filter is much smaller than the bandwidth of the signal.

The sequence of shaded rectangles on the left are meant to imply a time series corresponding to the output of a bandpass filter centered at with bandwidth Similarly, the sequence of shaded rectangles on the right imply a time series corresponding to the output of a bandpass filter centered at with bandwidth

Let’s look at a specific example of the cyclic autocorrelation function: the textbook rectangular-pulse BPSK signal with IID symbols.

The cyclic autocorrelation function (CAF) for rectangular-pulse BPSK can be derived as a relatively simple closed-form expression (see My Papers [6] for example or The Literature [R1]). It can be estimated in a variety of ways, which we will discuss in future posts. The non-conjugate cycle frequencies for the signal are harmonics of the bit rate, , and the conjugate cycle frequencies are the non-conjugate cycle frequencies offset by the doubled carrier, or .

Recall that our simulated rectangular-pulse BPSK signal has samples per bit, or a bit rate of , and a carrier offset of , all in normalized units (meaning the sampling rate is unity). We’ve previously selected a sampling rate of MHz to provide a little physical realism; let’s do that here too. This choice means the bit rate is kHz and the carrier offset frequency is kHz. From these numbers, we see that the non-conjugate cycle frequencies are kHz, and that the conjugate cycle frequencies are kHz, or kHz.