## ChatGPT and CSP

Am I out of a job?

Update January 31, 2023: I’ve added numbers in square brackets next to the worst of the wrong things. I’ll document the errors at the bottom of the post.

Of course I have to see what ChatGPT has to say about CSP. Including definitions, which I don’t expect it to get too wrong, and code for estimators, which I expect it to get very wrong.

Let’s take a look.

## CSP Community Spotlight: A Publicly Available python-Based SCF Estimator

The CSP Blog recently received a comment from a signal processor that needed a small amount of debugging help with their python spectral correlation estimator code.

The code uses a form of the time-smoothing method and aims to compute and plot the spectral correlation estimate as well as the corresponding coherence estimate. What is cool about this code is that it is clear, well-organized, on github, and is written using Jupyter Notebook. Moreover, there is a Google Colab function so that anyone can run the code from a chrome browser and see the results, even a python newbie like me. Tres moderne.

Continue reading “CSP Community Spotlight: A Publicly Available python-Based SCF Estimator”

## Correcting the Record: Comments On “Wireless Signal Representation Techniques for Automatic Modulation Classification,” by X. Liu et al

It’s too close to home, and it’s too near the bone …

Park the car at the side of the road
You should know
Time’s tide will smother you…
And I will too

“That Joke Isn’t Funny Anymore” by The Smiths

I applaud the intent behind the paper in this post’s title, which is The Literature [R183], apparently accepted in 2022 for publication in IEEE Access, a peer-reviewed journal. That intent is to list all the found ways in which researchers preprocess radio-frequency data (complex sampled data) prior to applying some sort of modulation classification (recognition) algorithm or system.

The problem is that this attempt at gathering up all of the ‘representations’ gets a lot of the math wrong, and so has a high potential to confuse rather than illuminate.

There’s only one thing to do: correct the record.

Continue reading “Correcting the Record: Comments On “Wireless Signal Representation Techniques for Automatic Modulation Classification,” by X. Liu et al”

## Wow, Elsevier, Just … Wow. Comments On “Cyclic Correntropy: Properties and the Application in Symbol Rate Estimation Under Alpha-Stable Distributed Noise,” by S. Luan et al.

Can we fix peer review in engineering by some form of payment to reviewers?

Let’s talk about another paper about cyclostationarity and correntropy. I’ve critically reviewed two previously, which you can find here and here. When you look at the correntropy as applied to a cyclostationary signal, you get something called cyclic correntropy, which is not particularly useful except if you don’t understand regular cyclostationarity and some aspects of garden-variety signal processing. Then it looks great.

But this isn’t a post that primarily takes the authors of a paper to task, although it does do that. I want to tell the tale to get us thinking about what ‘peer’ could mean, these days, in ‘peer-reviewed paper.’ How do we get the best peers to review our papers?

Let’s take a look at The Literature [R173].

Continue reading “Wow, Elsevier, Just … Wow. Comments On “Cyclic Correntropy: Properties and the Application in Symbol Rate Estimation Under Alpha-Stable Distributed Noise,” by S. Luan et al.”

## Comments on “Deep Neural Network Feature Designs for RF Data-Driven Wireless Device Classification,” by B. Hamdaoui et al

Another post-publication review of a paper that is weak on the ‘RF’ in RF machine learning.

Let’s take a look at a recently published paper (The Literature [R148]) on machine-learning-based modulation-recognition to get a data point on how some electrical engineers–these are more on the side of computer science I believe–use mathematics when they turn to radio-frequency problems. You can guess it isn’t pretty, and that I’m not here to exalt their acumen.

Continue reading “Comments on “Deep Neural Network Feature Designs for RF Data-Driven Wireless Device Classification,” by B. Hamdaoui et al”

## Spectral Correlation and Cyclic Correlation Plots for Real-Valued Signals

Spectral correlation surfaces for real-valued and complex-valued versions of the same signal look quite different.

In the real world, the electromagnetic field is a multi-dimensional time-varying real-valued function (volts/meter or newtons/coulomb). But in mathematical physics and signal processing, we often use complex-valued representations of the field, or of quantities derived from it, to facilitate our mathematics or make the signal processing more compact and efficient.

So throughout the CSP Blog I’ve focused almost exclusively on complex-valued signals and data. However, there is a considerable older literature that uses real-valued signals, such as The Literature [R1, R151]. You can use either real-valued or complex-valued signal representations and data, as you prefer, but there are advantages and disadvantages to each choice. Moreover, an author might not be perfectly clear about which one is used, especially when presenting a spectral correlation surface (as opposed to a sequence of equations, where things are often more clear).

Continue reading “Spectral Correlation and Cyclic Correlation Plots for Real-Valued Signals”

## Professor Jang Again Tortures CSP Mathematics Until it Breaks

In which my life is made a little harder.

We first met Professor Jang in a “Comments on the Literature” type of post from 2016. In that post, I pointed out fundamental mathematical errors contained in a paper the Professor published in the IEEE Communications Letters in 2014 (The Literature [R71]).

I have just noticed a new paper by Professor Jang, published in the journal IEEE Access, which is a peer-reviewed journal, like the Communications Letters. This new paper is titled “Simultaneous Power Harvesting and Cyclostationary Spectrum Sensing in Cognitive Radios” (The Literature [R144]). Many of the same errors are present in this paper. In fact, the beginning of the paper, and the exposition on cyclostationary signal processing is nearly the same as in The Literature [R71].

Let’s take a look.

## A Gallery of Cyclic Correlations

There are some situations in which the spectral correlation function is not the preferred measure of (second-order) cyclostationarity. In these situations, the cyclic autocorrelation (non-conjugate and conjugate versions) may be much simpler to estimate and work with in terms of detector, classifier, and estimator structures. So in this post, I’m going to provide surface plots of the cyclic autocorrelation for each of the signals in the spectral correlation gallery post. The exceptions are those signals I called feature-rich in the spectral correlation gallery post, such as DSSS, LTE, and radar. Recall that such signals possess a large number of cycle frequencies, and plotting their three-dimensional spectral correlation surface is not helpful as it is difficult to interpret with the human eye. So for the cycle-frequency patterns of feature-rich signals, we’ll rely on the stem-style (cyclic-domain profile) plots that I used in the spectral correlation gallery post.

## On The Shoulders

What modest academic success I’ve had in the area of cyclostationary signal theory and cyclostationary signal processing is largely due to the patient mentorship of my doctoral adviser, William (Bill) Gardner, and the fact that I was able to build on an excellent foundation put in place by Gardner, his advisor Lewis Franks, and key Gardner students such as William (Bill) Brown.

## Comments on “Detection of Almost-Cyclostationarity: An Approach Based on a Multiple Hypothesis Test” by S. Horstmann et al

The statistics-oriented wing of electrical engineering is perpetually dazzled by [insert Revered Person]’s Theorem at the expense of, well, actual engineering.

I recently came across the conference paper in the post title (The Literature [R101]). Let’s take a look.

The paper is concerned with “detect[ing] the presence of ACS signals with unknown cycle period.” In other words, blind cyclostationary-signal detection and cycle-frequency estimation. Of particular importance to the authors is the case in which the “period of cyclostationarity” is not equal to an integer number of samples. They seem to think this is a new and difficult problem. By my lights, it isn’t. But maybe I’m missing something. Let me know in the Comments.

## CSP Estimators: The FFT Accumulation Method

An alternative to the strip spectral correlation analyzer.

Let’s look at another spectral correlation function estimator: the FFT Accumulation Method (FAM). This estimator is in the time-smoothing category, is exhaustive in that it is designed to compute estimates of the spectral correlation function over its entire principal domain, and is efficient, so that it is a competitor to the Strip Spectral Correlation Analyzer (SSCA) method. I implemented my version of the FAM by using the paper by Roberts et al (The Literature [R4]). If you follow the equations closely, you can successfully implement the estimator from that paper. The tricky part, as with the SSCA, is correctly associating the outputs of the coded equations to their proper $\displaystyle (f, \alpha)$ values.

## CSP Blog Highlights

Welcome to the CSP Blog!

To help new readers, I’m supplying here links to the posts that have gotten the most attention over the lifetime of the Blog. Omitted from this list are the more esoteric topics as well as most of the posts that comment on the engineering literature.

Click the button below to follow the CSP Blog:

Use this button to donate to the CSP Blog:

Support the CSP Blog and Keep it Ad-Free

Please consider donating to the CSP Blog to keep it ad-free and to support the addition of major new features. The small box below is used to specify the number of $5 donations.$5.00

You can see a pre-publication version of my latest CSP journal paper, on “tunneling”, here.

Here are some highlights:

## Comments on “Blind Cyclostationary Spectrum Sensing in Cognitive Radios” by W. M. Jang

We are all susceptible to using bad mathematics to get us where we want to go. Here is an example.

I recently came across the 2014 paper in the title of this post. I mentioned it briefly in the post on the periodogram. But I’m going to talk about it a bit more here because this is the kind of thing that makes things harder for people trying to learn about cyclostationarity, which eventually leads to the need for something like the CSP Blog as a corrective.

The idea behind the paper is that it would be nice to avoid the need for prior knowledge of cycle frequencies when using cycle detectors or the like. If you could just compute the entire spectral correlation function, then collapse it by integrating (summing) over frequency $f$, then you’d have a one-dimensional function of cycle frequency $\alpha$ and you could then process that function inexpensively to perform detection and classification tasks.

## The Periodogram

The periodogram is the scaled magnitude-squared finite-time Fourier transform of something. It is as random as its input–it never converges to the power spectrum.

I’ve been reviewing a lot of technical papers lately and I’m noticing that it is becoming common to assert that the limiting form of the periodogram is the power spectral density or that the limiting form of the cyclic periodogram is the spectral correlation function. This isn’t true. These functions do not become, in general, less random (erratic) as the amount of data that is processed increases without limit. On the contrary, they always have large variance. Some form of averaging (temporal or spectral) is needed to permit the periodogram to converge to the power spectrum or the cyclic periodogram to converge to the spectral correlation function (SCF).

In particular, I’ve been seeing things like this:

$\displaystyle S_x^\alpha(f) = \lim_{T\rightarrow\infty} \frac{1}{T} X_T(f+\alpha/2) X_T^*(f-\alpha/2), \hfill (1)$

where $X_T(f+\alpha/2)$ is the Fourier transform of $x(t)$ on $t \in [-T/2, T/2]$. In other words, the usual cyclic periodogram we talk about here on the CSP blog. See, for example, The Literature [R71], Equation (3).

## CSP Estimators: The Strip Spectral Correlation Analyzer

The SSCA is a good tool for blind (no prior information) exhaustive (all cycle frequencies) spectral correlation analysis. An alternative is the FFT accumulation method.

In this post I present a very useful blind cycle-frequency estimator known in the literature as the strip spectral correlation analyzer (SSCA) (The Literature [R3-R5]). We’ve covered the basics of the frequency-smoothing method (FSM) and the time-smoothing method (TSM) of estimating the spectral correlation function (SCF) in previous posts. The TSM and FSM are efficient estimators of the SCF when it is desired to estimate it for one or a few cycle frequencies (CFs). The SSCA, on the other hand, is efficient when we want to estimate the SCF for all CFs.

See also an alternate method of efficient exhaustive SCF estimation: The FFT Accumulation Method.

## Second-Order Estimator Verification Guide

Use this post to help check the accuracy of your second-order CSP estimators.

Update September 2022: New section on the non-conjugate and conjugate coherence function.

***

In this post I provide some tools for the do-it-yourself CSP practitioner. One of the goals of this blog is to help new CSP researchers and students to write their own estimators and algorithms. This post contains some spectral correlation function and cyclic autocorrelation function estimates and numerically evaluated formulas that can be compared to those produced by anybody’s code.

The signal of interest is, of course, our rectangular-pulse BPSK signal with symbol rate $0.1$ (normalized frequency units) and carrier offset $0.05$. You can download a MATLAB script for creating such a signal here.

The formula for the SCF for a textbook BPSK signal is published in several places (The Literature [R47], My Papers [6]) and depends mainly on the Fourier transform of the pulse function used by the textbook signal.

We’ll compare the numerically evaluated spectral correlation formula with estimates produced by my version of the frequency-smoothing method (FSM). The FSM estimates and the theoretical functions are contained in a MATLAB mat file here. (I had to change the extension of the mat file from .mat to .doc to allow posting it to WordPress–change it back after downloading. It is a zipped .mat file as of 12/2/22.) In all the results shown here and that you can download, the processed data-block length is $65536$ samples and the FSM smoothing width is $0.02$ Hz. A rectangular smoothing window is used. For all cycle frequencies except zero (non-conjugate), a zero-padding factor of two is used in the FSM.

For the cyclic autocorrelation, we provide estimates using two methods: inverse Fourier transformation of the spectral correlation estimate and direct averaging of the second-order lag product in the time domain.

## A Gallery of Spectral Correlation

Pictures are worth N words, and M equations, where N and M are large integers.

In this post I provide plots of the spectral correlation for a variety of simulated textbook signals and several captured communication signals. The plots show the variety of cycle-frequency patterns that arise from the disparate approaches to digital communication signaling. The distinguishability of these patterns, combined with the inability to distinguish based on the power spectrum, leads to a powerful set of classification (modulation recognition) features (My Papers [16, 25, 26, 28]).

In all cases, the cycle frequencies are blindly estimated by the strip spectral correlation analyzer (The Literature [R3, R4]) and the estimates used by the FSM to compute the spectral correlation function. MATLAB is then used to plot the magnitude of the spectral correlation and conjugate spectral correlation, as specified by the determined non-conjugate and conjugate cycle frequencies.

There are three categories of signal types in this gallery: textbook signals, captured signals, and feature-rich signals. The latter comprises some captured signals (e.g., LTE) and some simulated radar signals. For the first two signal categories, the three-dimensional surface plots I’ve been using will suffice for illustrating the cycle-frequency patterns and the behavior of the spectral correlation function over frequency. But for the last category, the number of cycle frequencies is so large that the three-dimensional surface is difficult to interpret–it is a visual mess. For these signals, I’ll plot the maximum spectral correlation magnitude over spectral frequency $f$ versus the detected cycle frequency $\alpha$ (as in this post).

A complementary gallery of cyclic autocorrelation functions can be found here.

Continue reading “A Gallery of Spectral Correlation”

## CSP Estimators: The Time Smoothing Method

The non-blind spectral-correlation estimator called the TSM is favored when one wishes to avoid long FFTs.

In a previous post, we introduced the frequency-smoothing method (FSM) of spectral correlation function (SCF) estimation. The FSM convolves a pulse-like smoothing window $g(f)$ with the cyclic periodogram to form an estimate of the SCF. An advantage of the method is that is allows fine control over the spectral resolution of the SCF estimate through the choice of $g(f)$, but the drawbacks are that it requires a Fourier transform as long as the data-record undergoing processing, and the convolution can be expensive. However, the expense of the convolution can be mitigated by using rectangular $g(f)$.

In this post, we introduce the time-smoothing method (TSM) of SCF estimation. Instead of averaging (smoothing) the cyclic periodogram over spectral frequency, multiple cyclic periodograms are averaged over time. When the non-conjugate cycle frequency of zero is used, this method produces an estimate of the power spectral density, and is essentially the Bartlett spectrum estimation method. The TSM can be found in My Papers [6] (Eq. (54)), and other places in the literature.

## CSP Estimators: The Frequency-Smoothing Method

The non-blind spectral-correlation estimator called the FSM is favored when one wishes to have fine control over frequency resolution and can tolerate long FFTs.

In this post I describe a basic estimator for the spectral correlation function (SCF): the frequency-smoothing method (FSM). The FSM is a way to estimate the SCF for a single value of cycle frequency. Recall from the basic theory of the cyclic autocorrelation and SCF that the SCF is obtained by infinite-time averaging of the cyclic periodogram or by infinitesimal-resolution frequency averaging of the cyclic periodogram. The FSM is merely a finite-time/finite-resolution approximation to the SCF definition.

One place the FSM can be found is in (My Papers [6]), where I introduce time-smoothed and frequency-smoothed higher-order cyclic periodograms as estimators of the cyclic polyspectrum. When the cyclic polyspectrum order is set to $n = 2$, the cyclic polyspectrum becomes the spectral correlation function, so the FSM discussed in this post is just a special case of the more general estimator in [6, Section VI.B].