SPTK: Ideal Filters

Ideal filters have rectangular or unit-step-like transfer functions and so are not physical. But they permit much insight into the analysis and design of real-world linear systems.

Previous SPTK Post: Convolution       Next SPTK Post: The Moving-Average Filter

We continue with our non-CSP signal-processing tool-kit series with this post on ideal filtering. Ideal filters are those filters with transfer functions that are rectangular, step-function-like, or combinations of rectangles and step functions.

Continue reading “SPTK: Ideal Filters”

SPTK: Convolution and the Convolution Theorem

Convolution is an essential element in everyone’s signal-processing toolkit. We’ll look at it in detail in this post.

Previous SPTK Post: Interconnection of Linear Systems      Next SPTK Post: Ideal Filters

This installment of the Signal Processing Toolkit series of CSP Blog posts deals with the ubiquitous signal-processing operation known as convolution. We originally came across it in the context of linear time-invariant systems. In this post, we focus on the mechanics of computing convolutions and discuss their utility in signal processing and CSP.

Continue reading “SPTK: Convolution and the Convolution Theorem”

SPTK: Linear Time-Invariant Systems

LTI systems, or filters, are everywhere in signal processing. They allow us to adjust the amplitudes and phases of spectral components of the input.

Previous SPTK Post: The Fourier Transform         Next SPTK Post: Frequency Response

In this Signal Processing Toolkit post, we’ll take a first look at arguably the most important class of system models: linear time-invariant (LTI) systems.

What do signal processors and engineers mean by system? Most generally, a system is a rule or mapping that associates one or more input signals to one or more output signals. As we did with signals, we discuss here various useful dichotomies that break up the set of all systems into different subsets with important properties–important to mathematical analysis as well as to design and implementation. Then we’ll look at time-domain input/output relationships for linear systems. In a future post we’ll look at the properties of linear systems in the frequency domain.

Continue reading “SPTK: Linear Time-Invariant Systems”

SPTK: The Fourier Transform

An indispensable tool in CSP and all of signal processing!

Previous SPTK Post: The Fourier Series      Next SPTK Post: Linear Systems

This post in the Signal Processing Toolkit series deals with a key mathematical tool in CSP: The Fourier transform. Let’s try to see how the Fourier transform arises from a limiting version of the Fourier series.

Continue reading “SPTK: The Fourier Transform”

SPTK: The Fourier Series

A crucial tool for developing the temporal parameters of CSP.

Previous SPTK Post: Signal Representations            Next SPTK Post: The Fourier Transform

This installment of the Signal Processing Toolkit shows how the Fourier series arises from a consideration of representing arbitrary signals as vectors in a signal space. We also provide several examples of Fourier series calculations, interpret the Fourier series, and discuss its relevance to cyclostationary signal processing.

Continue reading “SPTK: The Fourier Series”

Signal Processing Toolkit: Signals

Introducing the SPTK on the CSP Blog. Basic signal-processing tools with discussions of their connections to and uses in CSP.

Next SPTK Post: Signal Representations

This is the inaugural post of a new series of posts I’m calling the Signal Processing Toolkit (SPTK).  The SPTK posts will cover relatively simple topics in signal processing that are useful in the practice of cyclostationary signal processing. So, they are not CSP posts, but CSP practitioners need to know this material to be successful in CSP. The CSP Blog is branching out! (But don’t worry, there are more CSP posts coming too.)

Continue reading “Signal Processing Toolkit: Signals”

Can a Machine Learn a Power Spectrum Estimator?

Learning machine learning for radio-frequency signal-processing problems, continued.

I continue with my foray into machine learning (ML) by considering whether we can use widely available ML tools to create a machine that can output accurate power spectrum estimates. Previously we considered the perhaps simpler problem of learning the Fourier transform. See here and here.

Along the way I’ll expose my ignorance of the intricacies of machine learning and my apparent inability to find the correct hyperparameter settings for any problem I look at. But, that’s where you come in, dear reader. Let me know what to do!

Continue reading “Can a Machine Learn a Power Spectrum Estimator?”

Data Set for the Machine-Learning Challenge

A PSK/QAM/SQPSK data set with randomized symbol rate, inband SNR, carrier-frequency offset, and pulse roll-off.

Update September 2020. I made a mistake when I created the signal-parameter “truth” files signal_record.txt and signal_record_first_20000.txt. Like the DeepSig RML data sets that I analyzed on the CSP Blog here and here, the SNR parameter in the truth files did not match the actual SNR of the signals in the data files. I’ve updated the truth files and the links below. You can still use the original files for all other signal parameters, but the SNR parameter was in error.

Update July 2020. I originally posted 20,000 signals in the posted data set. I’ve now added another 92,000 for a total of 112,000 signals. The original signals are contained in Batches 1-5, the additional signals in Batches 6-28. I’ve placed these additional Batches at the end of the post to preserve the original post’s content.

Continue reading “Data Set for the Machine-Learning Challenge”

MATLAB’s SSCA: commP25ssca.m

In this short post, I describe some errors that are produced by MATLAB’s strip spectral correlation analyzer function commP25ssca.m. I don’t recommend that you use it; far better to create your own function.

Continue reading “MATLAB’s SSCA: commP25ssca.m”

CSP Estimators: The FFT Accumulation Method

An alternative to the strip spectral correlation analyzer.

Let’s look at another spectral correlation function estimator: the FFT Accumulation Method (FAM). This estimator is in the time-smoothing category, is exhaustive in that it is designed to compute estimates of the spectral correlation function over its entire principal domain, and is efficient, so that it is a competitor to the Strip Spectral Correlation Analyzer (SSCA) method. I implemented my version of the FAM by using the paper by Roberts et al (The Literature [R4]). If you follow the equations closely, you can successfully implement the estimator from that paper. The tricky part, as with the SSCA, is correctly associating the outputs of the coded equations to their proper \displaystyle (f, \alpha) values.

Continue reading “CSP Estimators: The FFT Accumulation Method”

‘Can a Machine Learn the Fourier Transform?’ Redux, Plus Relevant Comments on a Machine-Learning Paper by M. Kulin et al.

Reconsidering my first attempt at teaching a machine the Fourier transform with the help of a CSP Blog reader. Also, the Fourier transform is viewed by Machine Learners as an input data representation, and that representation matters.

I first considered whether a machine (neural network) could learn the (64-point, complex-valued)  Fourier transform in this post. I used MATLAB’s Neural Network Toolbox and I failed to get good learning results because I did not properly set the machine’s hyperparameters. A kind reader named Vito Dantona provided a comment to that original post that contained good hyperparameter selections, and I’m going to report the new results here in this post.

Since the Fourier transform is linear, the machine should be set up to do linear processing. It can’t just figure that out for itself. Once I used Vito’s suggested hyperparameters to force the machine to be linear, the results became much better:

Continue reading “‘Can a Machine Learn the Fourier Transform?’ Redux, Plus Relevant Comments on a Machine-Learning Paper by M. Kulin et al.”

Can a Machine Learn the Fourier Transform?

Well, can it? I mean, can it REALLY? Or just approximately?

Update: See Part 2 of this post at this link. If you want to leave on comment, leave it on Part 2. Comments closed on this Part 1 post.

Continue reading “Can a Machine Learn the Fourier Transform?”

Creating a Simple CS Signal: Rectangular-Pulse BPSK

We’ll use this simple textbook signal throughout the CSP Blog to illustrate and tie together all the different aspects of CSP.

To test the correctness of various CSP estimators, we need a sampled signal with known cyclostationary parameters. Additionally, the signal should be easy to create and understand. A good candidate for this kind of signal is the binary phase-shift keyed (BPSK) signal with rectangular pulse function.

PSK signals with rectangular pulse functions have infinite bandwidth because the signal bandwidth is determined by the Fourier transform of the pulse, which is a sinc() function for the rectangular pulse. So the rectangular pulse is not terribly practical–infinite bandwidth is bad for other users of the spectrum. However, it is easy to generate, and its statistical properties are known.

So let’s jump in. The baseband BPSK signal is simply a sequence of binary (\pm 1) symbols convolved with the rectangular pulse. The MATLAB script make_rect_bpsk.m does this and produces the following plot:

rect_bpsk_time_domain

The signal alternates between amplitudes of +1 and -1 randomly. After frequency shifting and adding white Gaussian noise, we obtain the power spectrum estimate:

rect_bpsk_psd

The power spectrum plot shows why the rectangular-pulse BPSK signal is not popular in practice. The range of frequencies for which the signal possesses non-zero average power is infinite, so it will interfere with signals “nearby” in frequency. However, it is a good signal for us to use as a test input in all of our CSP algorithms and estimators.

The MATLAB script that creates the BPSK signal and the plots above is here. It is an m-file but I’ve stored it in a .doc file due to WordPress limitations I can’t yet get around.