In this short post, I describe some errors that are produced by MATLAB’s strip spectral correlation analyzer function commP25ssca.m. I don’t recommend that you use it; far better to create your own function.

# Signal Modeling

# Useful Signal Processing Blogs or Websites?

**Update November 1, 2018**: A site called feedspot (blog.feedspot.com) contacted me to tell me I made their “Top 10 Digital Signal Processing Blogs, Websites & Newsletters in 2018” list. Weirdly, there are only eight blogs in the list. What’s most important for this post is the *other* signal processing blogs on the list. So check it out if you are looking for other sources of online signal processing information. Enjoy! blog.feedspot.com/digital_signal_processing_blogs

*** *** ***

Some of my CSP posts get a lot of comments asking for help, and that’s a good thing. I continue to try to help readers to help themselves. Throughout my posts, I link terms and methods to webpages that provide tutorial or advanced information, and most of the time that means wikipedia.

But I’d like to be able to refer readers to good websites that discuss related aspects of signal processing and communication signals, such as filtering, spectrum estimation, mathematical models, Fourier analysis, etc. I’ve had little success with the Google searches I’ve tried.

# Comments on “Detection of Almost-Cyclostationarity: An Approach Based on a Multiple Hypothesis Test” by S. Horstmann et al

I recently came across the conference paper in the post title (The Literature [R101]). Let’s take a look.

The paper is concerned with “detect[ing] the presence of ACS signals with unknown cycle period.” In other words, blind cyclostationary-signal detection and cycle-frequency estimation. Of particular importance to the authors is the case in which the “period of cyclostationarity” is not equal to an integer number of samples. They seem to think this is a new and difficult problem. By my lights, it isn’t. But maybe I’m missing something. Let me know in the Comments.

# Cyclostationarity of Direct-Sequence Spread-Spectrum Signals

In this post we look at direct-sequence spread-spectrum (DSSS) signals, which can be usefully modeled as a kind of PSK signal. DSSS signals are used in a variety of real-world situations, including the familiar CDMA and WCDMA signals, covert signaling, and GPS. My colleague Antonio Napolitano has done some work on a large class of DSSS signals (The Literature [R11, R17, R95]), resulting in formulas for their spectral correlation functions, and I’ve made some remarks about their cyclostationary properties myself here and there (My Papers [16]).

A good thing, from the point of view of modulation recognition, about DSSS signals is that they are easily distinguished from other PSK and QAM signals by their spectral correlation functions. Whereas most PSK/QAM signals have only a single non-conjugate cycle frequency, and no conjugate cycle frequencies, DSSS signals have many non-conjugate cycle frequencies and in some cases also have many conjugate cycle frequencies.

# Machine Learning and Modulation Recognition: Comments on “Convolutional Radio Modulation Recognition Networks” by T. O’Shea, J. Corgan, and T. Clancy

In this post I provide some comments on another paper I’ve seen on arxiv.org (I have also received copies of it through email) that relates to modulation classification and cyclostationary signal processing. The paper is by O’Shea *et al* and is called “*Convolutional Radio Modulation Recognition Networks*.” You can find it at this link.

# 100-MHz Amplitude Modulation?

I came across a paper by Cohen and Eldar, researchers at the Technion in Israel. You can get the paper on the Arxiv site here. The title is “Sub-Nyquist Cyclostationary Detection for Cognitive Radio,” and the setting is spectrum sensing for cognitive radio. I have a question about the paper that I’ll ask below.

# Cyclostationarity of Digital QAM and PSK

Let’s look into the statistical properties of a class of textbook signals that encompasses digital quadrature amplitude modulation (QAM), phase-shift keying (PSK), and pulse-amplitude modulation (PAM). I’ll call the class simply digital QAM (DQAM), and all of its members have an analytical-signal mathematical representation of the form

In this model, is the symbol index, is the symbol rate, is the carrier frequency (sometimes called the frequency offset), is the symbol-clock phase, and is the carrier phase. The finite-energy function is the pulse function (sometimes called the pulse-shaping function). Finally, the random variable is called the symbol, and has a discrete distribution that is called the constellation.

Model (1) is a textbook signal when the sequence of symbols is independent and identically distributed (IID). This condition rules out real-world communication aids such as periodically transmitted bursts of known symbols, adaptive modulation (where the constellation may change in response to the vagaries of the propagation channel), some forms of coding, etc. Also, when the pulse function is a rectangle (with width ), the signal is even less realistic, and therefore more textbook.

We will look at the moments and cumulants of this general model in this post. Although the model is textbook, we could use it as a building block to form more realistic, less textbooky, signal models. Then we could find the cyclostationarity of those models by applying signal-processing transformation rules that define how the cumulants of the output of a signal processor relate to those for the input.