Resolution in Time, Frequency, and Cycle Frequency for CSP Estimators

In this post, we look at the ability of various CSP estimators to distinguish cycle frequencies, temporal changes in cyclostationarity, and spectral features. These abilities are quantified by the resolution properties of CSP estimators.

Resolution Parameters in CSP: Preview

Consider performing some CSP estimation task, such as using the frequency-smoothing method, time-smoothing method, or strip spectral correlation analyzer method of estimating the spectral correlation function. The estimate employs T seconds of data.

Then the temporal resolution \Delta t of the estimate is approximately T, the cycle-frequency resolution \Delta \alpha is about 1/T, and the spectral resolution \Delta f depends strongly on the particular estimator and its parameters. The resolution product \Delta f \Delta t was discussed in this post. The fundamental result for the resolution product is that it must be very much larger than unity in order to obtain an SCF estimate with low variance.

Continue reading

CSP Estimators: Cyclic Temporal Moments and Cumulants

In this post we discuss ways of estimating n-th order cyclic temporal moment and cumulant functions. Recall that for n=2, cyclic moments and cyclic cumulants are usually identical. They differ when the signal contains one or more finite-strength additive sine-wave components. In the common case when such components are absent (as in our recurring numerical example involving rectangular-pulse BPSK), they are equal and they are also equal to the conventional cyclic autocorrelation function provided the delay vector is chosen appropriately.

The more interesting case is when the order n is greater than 2. Most communication signal models possess odd-order moments and cumulants that are identically zero, so the first non-trivial order n greater than 2 is 4. So our estimation task is to estimate n-th order temporal moment and cumulant functions for n \ge 4 using a sampled-data record of length T.

Continue reading

More on Pure and Impure Sine Waves

Remember when we derived the cumulant as the solution to the pure nth-order sine-wave problem? It sounded good at the time, I hope. But here I describe a curious special case where the interpretation of the cumulant as the pure component of a nonlinearly generated sine wave seems to break down.

Continue reading

Cyclostationarity of Direct-Sequence Spread-Spectrum Signals

In this post we look at direct-sequence spread-spectrum (DSSS) signals, which can be usefully modeled as a kind of PSK signal. DSSS signals are used in a variety of real-world situations, including the familiar CDMA and WCDMA signals, covert signaling, and GPS. My colleague Antonio Napolitano has done some work on a large class of DSSS signals (The Literature [R11, R17, R95]), resulting in formulas for their spectral correlation functions, and I’ve made some remarks about their cyclostationary properties myself here and there (My Papers [16]).

A good thing, from the point of view of modulation recognition, about DSSS signals is that they are easily distinguished from other PSK and QAM signals by their spectral correlation functions. Whereas most PSK/QAM signals have only a single non-conjugate cycle frequency, and no conjugate cycle frequencies, DSSS signals have many non-conjugate cycle frequencies and in some cases also have many conjugate cycle frequencies.

Continue reading

Cumulant (4, 2) is a Good Discriminator?

Let’s talk about another published paper on signal detection involving cyclostationarity and/or cumulants. This one is called “Energy-Efficient Processor¬†for Blind Signal Classification in Cognitive Radio Networks,” (The Literature [R69]), and is authored by UCLA researchers E. Rebeiz and four colleagues.

My focus on this paper it its idea that broad signal-type classes, such as direct-sequence spread-spectrum (DSSS), QAM, and OFDM can be reliably distinguished by the use of a single number: the fourth-order cumulant with two conjugated terms. This kind of cumulant is referred to as the (4, 2) cumulant here at the CSP Blog, and in the paper, because the order is n=4 and the number of conjugated terms is m=2.

Continue reading

Comments on “Blind Cyclostationary Spectrum Sensing in Cognitive Radios” by W. M. Jang

I recently came across the 2014¬†paper in the title of this post. I mentioned it briefly in the post on the periodogram. But I’m going to talk about it a bit more here because this is the kind of thing that makes things a bit harder for people trying to learn about cyclostationarity, which eventually leads to the need for something like the CSP Blog.

The idea behind the paper is that it would be nice to avoid the need for prior knowledge of cycle frequencies when using cycle detectors or the like. If you could just compute the entire spectral correlation function, then collapse it by integrating (summing) over frequency f, then you’d have a one-dimensional function of cycle frequency \alpha and you could then process that function inexpensively to perform detection and classification tasks.

Continue reading