Cumulant (4, 2) is a Good Discriminator?

Let’s talk about another published paper on signal detection involving cyclostationarity and/or cumulants. This one is called “Energy-Efficient Processor for Blind Signal Classification in Cognitive Radio Networks,” (The Literature [R69]), and is authored by UCLA researchers E. Rebeiz and four colleagues.

My focus on this paper it its idea that broad signal-type classes, such as direct-sequence spread-spectrum (DSSS), QAM, and OFDM can be reliably distinguished by the use of a single number: the fourth-order cumulant with two conjugated terms. This kind of cumulant is referred to as the (4, 2) cumulant here at the CSP Blog, and in the paper, because the order is n=4 and the number of conjugated terms is m=2.

Continue reading

Machine Learning and Modulation Recognition: Comments on “Convolutional Radio Modulation Recognition Networks” by T. O’Shea, J. Corgan, and T. Clancy

In this post I provide some comments on another paper I’ve seen on (I have also received copies of it through email) that relates to modulation classification and cyclostationary signal processing. The paper is by O’Shea et al and is called “Convolutional Radio Modulation Recognition Networks.” You can find it at this link.

Continue reading

Comments on “Blind Cyclostationary Spectrum Sensing in Cognitive Radios” by W. M. Jang

I recently came across the 2014 paper in the title of this post. I mentioned it briefly in the post on the periodogram. But I’m going to talk about it a bit more here because this is the kind of thing that makes things a bit harder for people trying to learn about cyclostationarity, which eventually leads to the need for something like the CSP Blog.

The idea behind the paper is that it would be nice to avoid the need for prior knowledge of cycle frequencies when using cycle detectors or the like. If you could just compute the entire spectral correlation function, then collapse it by integrating (summing) over frequency f, then you’d have a one-dimensional function of cycle frequency \alpha and you could then process that function inexpensively to perform detection and classification tasks.

Continue reading

The Periodogram

I’ve been reviewing a lot of technical papers lately and I’m noticing that it is becoming common to assert that the limiting form of the periodogram is the power spectral density or that the limiting form of the cyclic periodogram is the spectral correlation function. This isn’t true. These functions do not become less random (erratic) as the amount of data that is processed increases without limit. On the contrary, they always have large variance. Some form of averaging (temporal or spectral) is needed to permit the periodogram to converge to the power spectrum or the cyclic periodogram to converge to the spectral correlation function (SCF).

In particular, I’ve been seeing things like this:

\displaystyle S_x^\alpha(f) = \lim_{T\rightarrow\infty} \frac{1}{T} X_T(f+\alpha/2) X_T^*(f-\alpha/2), \hfill (1)

where X_T(f+\alpha/2) is the Fourier transform of x(t) on t \in [-T/2, T/2]. In other words, the usual cyclic periodogram we talk about here on the CSP blog. See, for example, The Literature [R71], Equation (3).

Continue reading

Cyclic Polyspectra

In this post we take a first look at the spectral parameters of higher-order cyclostationarity (HOCS). In previous posts, I have introduced the topic of HOCS and have looked at the temporal parameters, such as cyclic cumulants and cyclic moments. Those temporal parameters have proven useful in modulation classification and parameter estimation settings, and will likely be an important part of my ultimate radio-frequency scene analyzer.

The spectral parameters of HOCS have not proven to be as useful as the temporal parameters, unless you include the trivial case where the moment/cumulant order is equal to two. In that case, the spectral parameters reduce to the spectral correlation function, which is extremely useful in CSP (see the TDOA and signal-detection posts for example).

Continue reading

Comments on “Cyclostationary Correntropy: Definition and Application” by Fontes et al

I recently came across a published paper with the title Cyclostationary Correntropy: Definition and Application, by Aluisio Fontes et al. It is published in a journal called Expert Systems with Applications (Elsevier). Actually, it wasn’t the first time I’d seen this work by these authors. I had reviewed a similar paper in 2015 for a different journal.

I was surprised to see the paper published because I had a lot of criticisms of the original paper, and the other reviewers agreed since the paper was rejected. So I did my job, as did the other reviewers, and we tried to keep a flawed paper from entering the literature, where it would stay forever causing problems for readers.

The editor(s) of the journal Expert Systems with Applications did not ask me to review the paper, so I couldn’t give them the benefit of the work I already put into the manuscript, and apparently the editor(s) did not themselves see sufficient flaws in the paper to merit rejection.

It stings, of course, when you submit a paper that you think is good, and it is rejected. But it also stings when a paper you’ve carefully reviewed, and rejected, is published anyway.

Fortunately I have the CSP Blog, so I’m going on another rant. After all, I already did this the conventional rant-free way.

Continue reading