SPTK: Frequency Response of LTI Systems

Previous SPTK Post: LTI Systems             Next SPTK Post: Interconnection of LTI Systems

We continue our progression of Signal-Processing ToolKit posts by looking at the frequency-domain behavior of linear time-invariant (LTI) systems. In the previous post, we established that the time-domain output of an LTI system is completely determined by the input and by the response of the system to an impulse input applied at time zero. This response is called the impulse response and is typically denoted by h(t).

Continue reading “SPTK: Frequency Response of LTI Systems”

SPTK: Linear Time-Invariant Systems

Previous SPTK Post: The Fourier Transform         Next SPTK Post: Frequency Response

In this Signal Processing Toolkit post, we’ll take a first look at arguably the most important class of system models: linear time-invariant (LTI) systems.

What do signal processors and engineers mean by system? Most generally, a system is a rule or mapping that associates one or more input signals to one or more output signals. As we did with signals, we discuss here various useful dichotomies that break up the set of all systems into different subsets with important properties–important to mathematical analysis as well as to design and implementation. Then we’ll look at time-domain input/output relationships for linear systems. In a future post we’ll look at the properties of linear systems in the frequency domain.

Continue reading “SPTK: Linear Time-Invariant Systems”

SPTK: The Fourier Transform

Previous SPTK Post: The Fourier Series      Next SPTK Post: Linear Systems

This post in the Signal Processing Toolkit series deals with a key mathematical tool in CSP: The Fourier transform. Let’s try to see how the Fourier transform arises from a limiting version of the Fourier series.

Continue reading “SPTK: The Fourier Transform”

SPTK: The Fourier Series

Previous SPTK Post: Signal Representations            Next SPTK Post: The Fourier Transform

This installment of the Signal Processing Toolkit shows how the Fourier series arises from a consideration of representing arbitrary signals as vectors in a signal space. We also provide several examples of Fourier series calculations, interpret the Fourier series, and discuss its relevance to cyclostationary signal processing.

Continue reading “SPTK: The Fourier Series”

SPTK: Signal Representations

Previous SPTK Post: Signals                    Next SPTK Post: Fourier Series

In this Signal Processing ToolKit post, we’ll look at the idea of signal representations. This is a branch of signal-processing mathematics that expresses one signal in terms of one or more signals drawn from a special set, such as the set of all sine waves, the set of harmonically related sine waves, a set of wavelets, a set of piecewise constant waveforms, etc.

Signal representations are a key component of understanding stationary-signal processing tools such as convolution and Fourier series and transforms. Since Fourier series and transforms are an integral part of CSP, signal representations are important for all our discussions at the CSP Blog.

Continue reading “SPTK: Signal Representations”

Signal Processing Toolkit: Signals

This is the inaugural post of a new series of posts I’m calling the Signal Processing Toolkit (SPTK).  The SPTK posts will cover relatively simple topics in signal processing that are useful in the practice of cyclostationary signal processing. So, they are not CSP posts, but CSP practitioners need to know this material to be successful in CSP. The CSP Blog is branching out! (But don’t worry, there are more CSP posts coming too.)

Continue reading “Signal Processing Toolkit: Signals”