Comments on “Detection of Almost-Cyclostationarity: An Approach Based on a Multiple Hypothesis Test” by S. Horstmann et al

I recently came across the conference paper in the post title (The Literature [R101]). Let’s take a look.

The paper is concerned with “detect[ing] the presence of ACS signals with unknown cycle period.” In other words, blind cyclostationary-signal detection and cycle-frequency estimation. Of particular importance to the authors is the case in which the “period of cyclostationarity” is not equal to an integer number of samples. They seem to think this is a new and difficult problem. By my lights, it isn’t. But maybe I’m missing something. Let me know in the Comments.

Continue reading

A Challenge for the Machine Learners

A while back I was working with some machine-learning researchers on the problem of carrier-frequency-offset (CFO) estimation. The CFO is the residual carrier frequency exhibited by an imperfectly downconverted radio-frequency signal. I’ll describe it in more detail below. The idea behind the collaboration was to find the SNR, SINR, block-length, etc., ranges for which machine-learning algorithms outperform more traditional approaches, such as those involving exploitation of cyclostationarity. If we’re going to get rid of the feature-based approaches used by experts, then we’d better make sure that the machines can do at least as well as those approaches for the problems typically considered by the experts.

Continue reading

CSP Patent: Tunneling

My colleague Dr. Apurva Mody (of BAE Systems, IEEE 802.22, and the WhiteSpace Alliance) and I have received a patent on a CSP-related invention we call tunneling. The US Patent is 9,755,869 and you can read it here or download it here. We’ve got a journal paper in review and a 2013 MILCOM conference paper (My Papers [38]) that discuss and illustrate the involved ideas. I’m also working on a CSP Blog post on the topic.

Update December 28, 2017: Our Tunneling journal paper has been accepted for publication in the journal IEEE Transactions on Cognitive Communications and Networking. You can download the pre-publication version here.

Continue reading

CSP Estimators: Cyclic Temporal Moments and Cumulants

In this post we discuss ways of estimating n-th order cyclic temporal moment and cumulant functions. Recall that for n=2, cyclic moments and cyclic cumulants are usually identical. They differ when the signal contains one or more finite-strength additive sine-wave components. In the common case when such components are absent (as in our recurring numerical example involving rectangular-pulse BPSK), they are equal and they are also equal to the conventional cyclic autocorrelation function provided the delay vector is chosen appropriately.

The more interesting case is when the order n is greater than 2. Most communication signal models possess odd-order moments and cumulants that are identically zero, so the first non-trivial order n greater than 2 is 4. Our estimation task is to estimate n-th order temporal moment and cumulant functions for n \ge 4 using a sampled-data record of length T.

Continue reading

Radio-Frequency Scene Analysis

So why do I obsess over cyclostationary signals and cyclostationary signal processing? What’s the big deal, in the end? In this post I discuss my view of the ultimate use of cyclostationary signal processing (CSP): Radio-Frequency Scene Analysis (RFSA). Eventually, I hope to create a kind of Star Trek Tricorder for RFSA.

Continue reading