## SPTK: Echo Detection and the Prisoner’s Dilemma

Let’s apply some of our Signal Processing ToolKit tools to a problem in forensic signal processing!

Previous SPTK Post: The Sampling Theorem Next SPTK Post: Resampling in MATLAB

No, not that prisoner’s dilemma. The dilemma of a prisoner that claims, steadfastly, innocence. Even in the face of strong evidence and a fair jury trial.

In this Signal Processing ToolKit cul-de-sac of a post, we’ll look into a signal-processing adventure involving a digital sting recording and a claim of evidence tampering. We’ll be able to use some of our SPTK tools to investigate a real-world data record that might, just might, have been tampered with. (But most probably not!)

Continue reading “SPTK: Echo Detection and the Prisoner’s Dilemma”

## All BPSK Signals

An analysis of DeepSig’s 2016.10A data set, used in many published machine-learning papers, and detailed comments on quite a few of those papers.

Update March 2021

See my analyses of three other DeepSig datasets here, here, and here.

Update June 2020

I’ll be adding new papers to this post as I find them. At the end of the original post there is a sequence of date-labeled updates that briefly describe the relevant aspects of the newly found papers. Some machine-learning modulation-recognition papers deserve their own post, so check back at the CSP Blog from time-to-time for “Comments On …” posts.

## SPTK: The Fourier Series

A crucial tool for developing the temporal parameters of CSP.

This installment of the Signal Processing Toolkit shows how the Fourier series arises from a consideration of representing arbitrary signals as vectors in a signal space. We also provide several examples of Fourier series calculations, interpret the Fourier series, and discuss its relevance to cyclostationary signal processing.

## CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano

My friend and colleague Antonio Napolitano has just published a new book on cyclostationary signals and cyclostationary signal processing:

Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations, Academic Press/Elsevier, 2020, ISBN: 978-0-08-102708-0. The book is a comprehensive guide to the structure of cyclostationary random processes and signals, and it also provides pointers to the literature on many different applications. The book is mathematical in nature; use it to deepen your understanding of the underlying mathematics that make CSP possible.

You can check out the book on amazon.com using the following link:

Cyclostationary Processes and Time Series

## A Gallery of Cyclic Correlations

There are some situations in which the spectral correlation function is not the preferred measure of (second-order) cyclostationarity. In these situations, the cyclic autocorrelation (non-conjugate and conjugate versions) may be much simpler to estimate and work with in terms of detector, classifier, and estimator structures. So in this post, I’m going to provide surface plots of the cyclic autocorrelation for each of the signals in the spectral correlation gallery post. The exceptions are those signals I called feature-rich in the spectral correlation gallery post, such as DSSS, LTE, and radar. Recall that such signals possess a large number of cycle frequencies, and plotting their three-dimensional spectral correlation surface is not helpful as it is difficult to interpret with the human eye. So for the cycle-frequency patterns of feature-rich signals, we’ll rely on the stem-style (cyclic-domain profile) plots that I used in the spectral correlation gallery post.

## Simple Synchronization Using CSP

Using CSP to find the exact values of symbol rate, carrier frequency offset, symbol-clock phase, and carrier phase for PSK/QAM signals.

In this post I discuss the use of cyclostationary signal processing applied to communication-signal synchronization problems. First, just what are synchronization problems? Synchronize and synchronization have multiple meanings, but the meaning of synchronize that is relevant here is something like:

syn·chro·nize: To cause to occur or operate with exact coincidence in time or rate

If we have an analog amplitude-modulated (AM) signal (such as voice AM used in the AM broadcast bands) at a receiver we want to remove the effects of the carrier sine wave, resulting in an output that is only the original voice or music message. If we have a digital signal such as binary phase-shift keying (BPSK), we want to remove the effects of the carrier but also sample the message signal at the correct instants to optimally recover the transmitted bit sequence.

## Can a Machine Learn a Power Spectrum Estimator?

Learning machine learning for radio-frequency signal-processing problems, continued.

I continue with my foray into machine learning (ML) by considering whether we can use widely available ML tools to create a machine that can output accurate power spectrum estimates. Previously we considered the perhaps simpler problem of learning the Fourier transform. See here and here.

Along the way I’ll expose my ignorance of the intricacies of machine learning and my apparent inability to find the correct hyperparameter settings for any problem I look at. But, that’s where you come in, dear reader. Let me know what to do!

## Data Set for the Machine-Learning Challenge [CSPB.ML.2018]

A PSK/QAM/SQPSK data set with randomized symbol rate, inband SNR, carrier-frequency offset, and pulse roll-off.

Update February 2023: I’ve posted a third challenge dataset here. It is CSPB.ML.2023 and features cochannel signals.

Update April 2022. I’ve also posted a second dataset here. This new dataset is similar to the original ML Challenge dataset except the random variable representing the carrier frequency offset has a slightly different distribution.

If you refer to either of the posted datasets in a published paper, please use the following designators, which I am also using in papers I’m attempting to publish:

Original ML Challenge Dataset: CSPB.ML.2018.

Shifted ML Challenge Dataset: CSPB.ML.2022.

Update September 2020. I made a mistake when I created the signal-parameter “truth” files signal_record.txt and signal_record_first_20000.txt. Like the DeepSig RML data sets that I analyzed on the CSP Blog here and here, the SNR parameter in the truth files did not match the actual SNR of the signals in the data files. I’ve updated the truth files and the links below. You can still use the original files for all other signal parameters, but the SNR parameter was in error.

Update July 2020. I originally posted $20,000$ signals in the posted data set. I’ve now added another $92,000$ for a total of $112,000$ signals. The original signals are contained in Batches 1-5, the additional signals in Batches 6-28. I’ve placed these additional Batches at the end of the post to preserve the original post’s content.

Continue reading “Data Set for the Machine-Learning Challenge [CSPB.ML.2018]”

## Comments on “Detection of Almost-Cyclostationarity: An Approach Based on a Multiple Hypothesis Test” by S. Horstmann et al

The statistics-oriented wing of electrical engineering is perpetually dazzled by [insert Revered Person]’s Theorem at the expense of, well, actual engineering.

I recently came across the conference paper in the post title (The Literature [R101]). Let’s take a look.

The paper is concerned with “detect[ing] the presence of ACS signals with unknown cycle period.” In other words, blind cyclostationary-signal detection and cycle-frequency estimation. Of particular importance to the authors is the case in which the “period of cyclostationarity” is not equal to an integer number of samples. They seem to think this is a new and difficult problem. By my lights, it isn’t. But maybe I’m missing something. Let me know in the Comments.

## A Challenge for the Machine Learners

The machine-learning modulation-recognition community consistently claims vastly superior performance to anything that has come before. Let’s test that.

Update February 2023: A third dataset has been posted here. This new dataset, CSPB.ML.2023, features cochannel signals.

Update April 2022: I’ve also posted a second dataset here. This new dataset is similar to the original ML Challenge dataset except the random variable representing the carrier frequency offset has a slightly different distribution.

If you refer to any of the posted datasets in a published paper, please use the following designators, which I am also using in papers I’m attempting to publish:

Original ML Challenge Dataset: CSPB.ML.2018.

Shifted ML Challenge Dataset: CSPB.ML.2022.

Cochannel ML Dataset: CSPB.ML.2023.

### Update February 2019

I’ve decided to post the data set I discuss here to the CSP Blog for all interested parties to use. See the new post on the Data Set. If you do use it, please let me and the CSP Blog readers know how you fared with your experiments in the Comments section of either post. Thanks!

## CSP Patent: Tunneling

Tunneling == Purposeful severe undersampling of wideband communication signals. If some of the cyclostationarity property remains, we can exploit it at a lower cost.

My colleague Dr. Apurva Mody (of BAE Systems, AiRANACULUS, IEEE 802.22, and the WhiteSpace Alliance) and I have received a patent on a CSP-related invention we call tunneling. The US Patent is 9,755,869 and you can read it here or download it here. We’ve got a journal paper in review and a 2013 MILCOM conference paper (My Papers [38]) that discuss and illustrate the involved ideas. I’m also working on a CSP Blog post on the topic.

Update December 28, 2017: Our Tunneling journal paper has been accepted for publication in the journal IEEE Transactions on Cognitive Communications and Networking. You can download the pre-publication version here.

## CSP Estimators: Cyclic Temporal Moments and Cumulants

How do we efficiently estimate higher-order cyclic cumulants? The basic answer is first estimate cyclic moments, then combine using the moments-to-cumulants formula.

In this post we discuss ways of estimating $n$-th order cyclic temporal moment and cumulant functions. Recall that for $n=2$, cyclic moments and cyclic cumulants are usually identical. They differ when the signal contains one or more finite-strength additive sine-wave components. In the common case when such components are absent (as in our recurring numerical example involving rectangular-pulse BPSK), they are equal and they are also equal to the conventional cyclic autocorrelation function provided the delay vector is chosen appropriately. That is, the two-dimensional delay vector $\boldsymbol{\tau} = [\tau_1\ \ \tau_2]$ is set equal to $[\tau/2\ \ -\tau/2]$.

The more interesting case is when the order $n$ is greater than two. Most communication signal models possess odd-order moments and cumulants that are identically zero, so the first non-trivial order $n$ greater than two is four. Our estimation task is to estimate $n$-th order temporal moment and cumulant functions for $n \ge 4$ using a sampled-data record of length $T$.

## Modulation Recognition Using Cyclic Cumulants, Part I: Problem Description and Variants

Modulation recognition is the process of assigning one or more modulation-class labels to a provided time-series data sequence.

In this post, we start a discussion of what I consider the ultimate application of the theory of cyclostationary signals: Automatic Modulation Recognition. My relevant papers are My Papers [16,17,25,26,28,30,32,33,38,43,44]. See also my machine-learning modulation-recognition critiques by clicking on Machine Learning in the CSP Blog Categories on the right side of any post or page.

Modulation recognition is one thing, holistic radio-frequency scene analysis is quite another.

So why do I obsess over cyclostationary signals and cyclostationary signal processing? What’s the big deal, in the end? In this post I discuss my view of the ultimate use of cyclostationary signal processing (CSP): Radio-Frequency Scene Analysis (RFSA). Eventually, I hope to create a kind of Star Trek Tricorder for RFSA.

## CSP-Based Time-Difference-of-Arrival Estimation

Time-delay estimation can be used to determine the angle-of-arrival of a signal impinging on two spatially separated signals. This estimation problem gets hard when there is cochannel interference present.

Let’s discuss an application of cyclostationary signal processing (CSP): time-delay estimation. The idea is that sampled data is available from two antennas (sensors), and there is a common signal component in each data set. The signal component in one data set is the time-delayed or time-advanced version of the component in the other set. This can happen when a plane-wave radio frequency (RF) signal propagates and impinges on the two antennas. In such a case, the RF signal arrives at the sensors with a time difference proportional to the distance between the sensors along the direction of propagation, and so the time-delay estimation is also commonly referred to as time-difference-of-arrival (TDOA) estimation.

Consider the diagram shown in Figure 1. A distant transmitter emits a signal that is well-modeled as a plane wave once it reaches our two receivers. An individual wavefront of the signal arrives at the two sensors at different times.

The line segment AB is perpendicular to the direction of propagation for the RF signal. The angle $\theta$ is called the angle of arrival (AOA). If we could estimate the AOA, we can tell the direction from which the signal arrives, which could be useful in a variety of settings. Since the triangle ABC is a right triangle, we have

$\displaystyle \cos (\theta) = \frac{x}{d}. \hfill (1)$

When $\theta = 0$, the wavefronts first strike receiver 2, then must propagate over $x=d$ meters before striking receiver 1. On the other hand, when $\theta = 90^\circ$, each wavefront strikes the two receivers simultaneously. In the former case, the TDOA is maximum, and in the latter it is zero. The TDOA can be negative too, so that $180^\circ$ azimuthal degrees can be determined by estimating the TDOA.

In general, the wavefront must traverse $x$ meters between striking receiver 2 and striking receiver 1,

$\displaystyle x = d \cos(\theta). \hfill (2)$

Assuming the speed of propagation is $c$ meters/sec, the TDOA is given by

$\displaystyle D = \frac{x}{c} = \frac{d\cos{\theta}}{c} \mbox{\rm \ \ seconds}. \hfill (3)$

In this post I’ll review several methods of TDOA estimation, some of which employ CSP and some of which do not. We’ll see some of the advantages and disadvantages of the various classes of methods through inspection, simulation, and application to captured data. Consider this post as a starting point to a study or development effort rather than as a definitive performance characterization.