An analysis of DeepSig’s 2016.10A data set, used in many published machine-learning papers, and detailed comments on quite a few of those papers.

Update March 2021

See my analyses of three other DeepSig datasets here, here, and here.

Update June 2020

I’ll be adding new papers to this post as I find them. At the end of the original post there is a sequence of date-labeled updates that briefly describe the relevant aspects of the newly found papers. Some machine-learning modulation-recognition papers deserve their own post, so check back at the CSP Blog from time-to-time for “Comments On …” posts.

There are some situations in which the spectral correlation function is not the preferred measure of (second-order) cyclostationarity. In these situations, the cyclic autocorrelation (non-conjugate and conjugate versions) may be much simpler to estimate and work with in terms of detector, classifier, and estimator structures. So in this post, I’m going to provide surface plots of the cyclic autocorrelation for each of the signals in the spectral correlation gallery post. The exceptions are those signals I called feature-rich in the spectral correlation gallery post, such as DSSS, LTE, and radar. Recall that such signals possess a large number of cycle frequencies, and plotting their three-dimensional spectral correlation surface is not helpful as it is difficult to interpret with the human eye. So for the cycle-frequency patterns of feature-rich signals, we’ll rely on the stem-style (cyclic-domain profile) plots that I used in the spectral correlation gallery post.

Using CSP to find the exact values of symbol rate, carrier frequency offset, symbol-clock phase, and carrier phase for PSK/QAM signals.

In this post I discuss the use of cyclostationary signal processing applied to communication-signal synchronization problems. First, just what are synchronization problems? Synchronize and synchronization have multiple meanings, but the meaning of synchronize that is relevant here is something like:

syn·chro·nize: To cause to occur or operate with exact coincidence in time or rate

If we have an analog amplitude-modulated (AM) signal (such as voice AM used in the AM broadcast bands) at a receiver we want to remove the effects of the carrier sine wave, resulting in an output that is only the original voice or music message. If we have a digital signal such as binary phase-shift keying (BPSK), we want to remove the effects of the carrier but also sample the message signal at the correct instants to optimally recover the transmitted bit sequence.

Learning machine learning for radio-frequency signal-processing problems, continued.

I continue with my foray into machine learning (ML) by considering whether we can use widely available ML tools to create a machine that can output accurate power spectrum estimates. Previously we considered the perhaps simpler problem of learning the Fourier transform. See here and here.

Along the way I’ll expose my ignorance of the intricacies of machine learning and my apparent inability to find the correct hyperparameter settings for any problem I look at. But, that’s where you come in, dear reader. Let me know what to do!

The statistics-oriented wing of electrical engineering is perpetually dazzled by [insert Revered Person]’s Theorem at the expense of, well, actual engineering.

I recently came across the conference paper in the post title (The Literature [R101]). Let’s take a look.

The paper is concerned with “detect[ing] the presence of ACS signals with unknown cycle period.” In other words, blind cyclostationary-signal detection and cycle-frequency estimation. Of particular importance to the authors is the case in which the “period of cyclostationarity” is not equal to an integer number of samples. They seem to think this is a new and difficult problem. By my lights, it isn’t. But maybe I’m missing something. Let me know in the Comments.

How do we efficiently estimate higher-order cyclic cumulants? The basic answer is first estimate cyclic moments, then combine using the moments-to-cumulants formula.

In this post we discuss ways of estimating -th order cyclic temporal moment and cumulant functions. Recall that for , cyclic moments and cyclic cumulants are usually identical. They differ when the signal contains one or more finite-strength additive sine-wave components. In the common case when such components are absent (as in our recurring numerical example involving rectangular-pulse BPSK), they are equal and they are also equal to the conventional cyclic autocorrelation function provided the delay vector is chosen appropriately. That is, the two-dimensional delay vector is set equal to .

The more interesting case is when the order is greater than two. Most communication signal models possess odd-order moments and cumulants that are identically zero, so the first non-trivial order greater than two is four. Our estimation task is to estimate -th order temporal moment and cumulant functions for using a sampled-data record of length .

Spread-spectrum signals are used to enable shared-bandwidth communication systems (CDMA), precision position estimation (GPS), and secure wireless data transmission.

In this post we look at direct-sequence spread-spectrum (DSSS) signals, which can be usefully modeled as a kind of PSK signal. DSSS signals are used in a variety of real-world situations, including the familiar CDMA and WCDMA signals, covert signaling, and GPS. My colleague Antonio Napolitano has done some work on a large class of DSSS signals (The Literature [R11, R17, R95]), resulting in formulas for their spectral correlation functions, and I’ve made some remarks about their cyclostationary properties myself here and there (My Papers [16]).

PSK and QAM signals form the building blocks for a large number of practical real-world signals. Understanding their probability structure is crucial to understanding those more complicated signals.

Let’s look into the statistical properties of a class of textbook signals that encompasses digital quadrature amplitude modulation (QAM), phase-shift keying (PSK), and pulse-amplitude modulation (PAM). I’ll call the class simply digital QAM (DQAM), and all of its members have an analytical-signal mathematical representation of the form

In this model, is the symbol index, is the symbol rate, is the carrier frequency (sometimes called the carrier frequency offset), is the symbol-clock phase, and is the carrier phase. The finite-energy function is the pulse function (sometimes called the pulse-shaping function). Finally, the random variable is called the symbol, and has a discrete distribution that is called the constellation.

Model (1) is a textbook signal when the sequence of symbols is independent and identically distributed (IID). This condition rules out real-world communication aids such as periodically transmitted bursts of known symbols, adaptive modulation (where the constellation may change in response to the vagaries of the propagation channel), some forms of coding, etc. Also, when the pulse function is a rectangle (with width ), the signal is even less realistic, and therefore more textbooky.

We will look at the moments and cumulants of this general model in this post. Although the model is textbook, we could use it as a building block to form more realistic, less textbooky, signal models. Then we could find the cyclostationarity of those models by applying signal-processing transformation rules that define how the cumulants of the output of a signal processor relate to those for the input.

CSP shines when the problem involves strong noise or cochannel interference. Here we look at CSP-based signal-presence detection as a function of SNR and SIR.

Let’s take a look at a class of signal-presence detectors that exploit cyclostationarity and in doing so illustrate the good things that can happen with CSP whenever cochannel interference is present, or noise models deviate from simple additive white Gaussian noise (AWGN). I’m referring to the cycle detectors, the first CSP algorithms I ever studied (My Papers [1,4]).

SRRC PSK and QAM signals form important components of more complicated real-world communication signals. Let’s look at their second-order cyclostationarity here.

Let’s look at a somewhat more realistic textbook signal: The PSK/QAM signal with independent and identically distributed symbols (IID) and a square-root raised-cosine (SRRC) pulse function. The SRRC pulse is used in many practical systems and in many theoretical and simulation studies. In this post, we’ll look at how the free parameter of the pulse function, called the roll-off parameter or excess bandwidth parameter, affects the power spectrum and the spectral correlation function.

Pictures are worth N words, and M equations, where N and M are large integers.

In this post I provide plots of the spectral correlation for a variety of simulated textbook signals and several captured communication signals. The plots show the variety of cycle-frequency patterns that arise from the disparate approaches to digital communication signaling. The distinguishability of these patterns, combined with the inability to distinguish based on the power spectrum, leads to a powerful set of classification (modulation recognition) features (My Papers [16, 25, 26, 28]).

In all cases, the cycle frequencies are blindly estimated by the strip spectral correlation analyzer (The Literature [R3, R4]) and the estimates used by the FSM to compute the spectral correlation function. MATLAB is then used to plot the magnitude of the spectral correlation and conjugate spectral correlation, as specified by the determined non-conjugate and conjugate cycle frequencies.

There are three categories of signal types in this gallery: textbook signals, captured signals, and feature-rich signals. The latter comprises some captured signals (e.g., LTE) and some simulated radar signals. For the first two signal categories, the three-dimensional surface plots I’ve been using will suffice for illustrating the cycle-frequency patterns and the behavior of the spectral correlation function over frequency. But for the last category, the number of cycle frequencies is so large that the three-dimensional surface is difficult to interpret–it is a visual mess. For these signals, I’ll plot the maximum spectral correlation magnitude over spectral frequency versus the detected cycle frequency (as in this post).