Let’s take a brief look at the cyclostationarity of a captured DMR signal. It’s more complicated than one might think.

In this post I look at the cyclostationarity of a digital mobile radio (DMR) signal empirically. That is, I have a captured DMR signal from sigidwiki.com, and I apply blind CSP to it to determine its cycle frequencies and spectral correlation function. The signal is arranged in frames or slots, with gaps between successive slots, so there is the chance that we’ll see cyclostationarity due to the on-burst (or on-frame) signaling and cyclostationarity due to the framing itself.

Spectral correlation surfaces for real-valued and complex-valued versions of the same signal look quite different.

In the real world, the electromagnetic field is a multi-dimensional time-varying real-valued function (volts/meter or newtons/coulomb). But in mathematical physics and signal processing, we often use complex-valued representations of the field, or of quantities derived from it, to facilitate our mathematics or make the signal processing more compact and efficient.

So throughout the CSP Blog I’ve focused almost exclusively on complex-valued signals and data. However, there is a considerable older literature that uses real-valued signals, such as The Literature [R1, R151]. You can use either real-valued or complex-valued signal representations and data, as you prefer, but there are advantages and disadvantages to each choice. Moreover, an author might not be perfectly clear about which one is used, especially when presenting a spectral correlation surface (as opposed to a sequence of equations, where things are often more clear).

What happens when a cyclostationary time-series is treated as if it were stationary?

In this post let’s consider the difference between modeling a communication signal as stationary or as cyclostationary.

There are two contexts for this kind of issue. The first is when someone recognizes that a particular signal model is cyclostationary, and then takes some action to render it stationary (sometimes called ‘stationarizing the signal’). They then proceed with their analysis or algorithm development using the stationary signal model. The second context is when someone applies stationary-signal processing to a cyclostationary signal model, either without knowing that the signal is cyclostationary, or perhaps knowing but not caring.

At the center of this topic is the difference between the mathematical object known as a random process (or stochastic process) and the mathematical object that is a single infinite-time function (or signal or time-series).

A related paper is The Literature [R68], which discusses the pitfalls of applying tools meant for stationary signals to the samples of cyclostationary signals.

An analysis of DeepSig’s 2016.10A data set, used in many published machine-learning papers, and detailed comments on quite a few of those papers.

Update June 2020

I’ll be adding new papers to this post as I find them. At the end of the original post there is a sequence of date-labeled updates that briefly describe the relevant aspects of the newly found papers. Some machine-learning modulation-recognition papers deserve their own post, so check back at the CSP Blog from time-to-time for “Comments On …” posts.

We first met Professor Jang in a “Comments on the Literature” type of post from 2016. In that post, I pointed out fundamental mathematical errors contained in a paper the Professor published in the IEEE Communications Letters in 2014 (The Literature [R71]).

I have just noticed a new paper by Professor Jang, published in the journal IEEE Access, which is a peer-reviewed journal, like the Communications Letters. This new paper is titled “Simultaneous Power Harvesting and Cyclostationary Spectrum Sensing in Cognitive Radios” (The Literature [R144]). Many of the same errors are present in this paper. In fact, the beginning of the paper, and the exposition on cyclostationary signal processing is nearly the same as in The Literature [R71].

Do we need to consider all cycle frequencies, both positive and negative? Do we need to consider all delays and frequencies in our second-order CSP parameters?

As you progress through the various stages of learning CSP (intimidation, frustration, elucidation, puzzlement, and finally smooth operation), the symmetries of the various functions come up over and over again. Exploiting symmetries can result in lower computational costs, quicker debugging, and easier mathematical development.

What exactly do we mean by ‘symmetries of parameters?’ I’m talking primarily about the evenness or oddness of the time-domain functions in the delay and cycle frequency variables and of the frequency-domain functions in the spectral frequency and cycle frequency variables. Or a generalized version of evenness/oddness, such as , where and are closely related functions. We have to consider the non-conjugate and conjugate functions separately, and we’ll also consider both the auto and cross versions of the parameters. We’ll look at higher-order cyclic moments and cumulants in a future post.

You can use this post as a resource for mathematical development because I present the symmetry equations. But also each symmetry result is illustrated using estimated parameters via the frequency smoothing method (FSM) of spectral correlation function estimation. The time-domain parameters are obtained from the inverse transforms of the FSM parameters. So you can also use this post as an extension of the second-order verification guide to ensure that your estimator works for a wide variety of input parameters.

And I still don’t understand how a random variable with infinite variance can be a good model for anything physical. So there.

I’ve seen several published and pre-published (arXiv.org) technical papers over the past couple of years on the topic of cyclic correntropy (The Literature [R123-R127]). I first criticized such a paper ([R123]) here, but the substance of that review was about my problems with the presented mathematics, not impulsive noise and its effects on CSP. Since the papers keep coming, apparently, I’m going to put down some thoughts on impulsive noise and some evidence regarding simple means of mitigation in the context of CSP. Preview: I don’t think we need to go to the trouble of investigating cyclic correntropy as a means of salvaging CSP from the evil clutches of impulsive noise.

Using CSP to find the exact values of symbol rate, carrier frequency offset, symbol-clock phase, and carrier phase for PSK/QAM signals.

In this post I discuss the use of cyclostationary signal processing applied to communication-signal synchronization problems. First, just what are synchronization problems? Synchronize and synchronization have multiple meanings, but the meaning of synchronize that is relevant here is something like:

syn·chro·nize: To cause to occur or operate with exact coincidence in time or rate

If we have an analog amplitude-modulated (AM) signal (such as voice AM used in the AM broadcast bands) at a receiver we want to remove the effects of the carrier sine wave, resulting in an output that is only the original voice or music message. If we have a digital signal such as binary phase-shift keying (BPSK), we want to remove the effects of the carrier but also sample the message signal at the correct instants to optimally recover the transmitted bit sequence.

In this short post, I describe some errors that are produced by MATLAB’s strip spectral correlation analyzer function commP25ssca.m. I don’t recommend that you use it; far better to create your own function.

The statistics-oriented wing of electrical engineering is perpetually dazzled by [insert Revered Person]’s Theorem at the expense of, well, actual engineering.

I recently came across the conference paper in the post title (The Literature [R101]). Let’s take a look.

The paper is concerned with “detect[ing] the presence of ACS signals with unknown cycle period.” In other words, blind cyclostationary-signal detection and cycle-frequency estimation. Of particular importance to the authors is the case in which the “period of cyclostationarity” is not equal to an integer number of samples. They seem to think this is a new and difficult problem. By my lights, it isn’t. But maybe I’m missing something. Let me know in the Comments.

An alternative to the strip spectral correlation analyzer.

Let’s look at another spectral correlation function estimator: the FFT Accumulation Method (FAM). This estimator is in the time-smoothing category, is exhaustive in that it is designed to compute estimates of the spectral correlation function over its entire principal domain, and is efficient, so that it is a competitor to the Strip Spectral Correlation Analyzer (SSCA) method. I implemented my version of the FAM by using the paper by Roberts et al (The Literature [R4]). If you follow the equations closely, you can successfully implement the estimator from that paper. The tricky part, as with the SSCA, is correctly associating the outputs of the coded equations to their proper values.

Unlike conventional spectrum analysis for stationary signals, CSP has three kinds of resolutions that must be considered in all CSP applications, not just two.

In this post, we look at the ability of various CSP estimators to distinguish cycle frequencies, temporal changes in cyclostationarity, and spectral features. These abilities are quantified by the resolution properties of CSP estimators.

Then the temporal resolution of the estimate is approximately , the cycle-frequency resolution is about , and the spectral resolution depends strongly on the particular estimator and its parameters. The resolution product was discussed in this post. The fundamental result for the resolution product is that it must be very much larger than unity in order to obtain an SCF estimate with low variance.

Radio-frequency scene analysis is much more complex than modulation recognition. A good first step is to blindly identify the frequency intervals for which significant non-noise energy exists.

In this post, I discuss a signal-processing algorithm that has almost nothing to do with cyclostationary signal processing. Almost. The topic is automated spectral segmentation, which I also call band-of-interest (BOI) detection. When attempting to perform automatic radio-frequency scene analysis (RFSA), we may be confronted with a data block that contains multiple signals in a number of distinct frequency subbands. Moreover, these signals may be turning on and off within the data block. To apply our cyclostationary signal processing tools effectively, we would like to isolate these signals in time and frequency to the greatest extent possible using linear time-invariant filtering (for separating in the frequency dimension) and time-gating (for separating in the time dimension). Then the isolated signal components can be processed serially using CSP.

It is very important to remember that even perfect spectral and temporal segmentation will not solve the cochannel-signal problem. It is perfectly possible that an isolated subband will contain more than one cochannel signal.

The basics of my BOI-detection approach are published in a 2007 conference paper (My Papers [32]). I’ll describe this basic approach, illustrate it with examples relevant to RFSA, and also provide a few extensions of interest, including one that relates to cyclostationary signal processing.

Spread-spectrum signals are used to enable shared-bandwidth communication systems (CDMA), precision position estimation (GPS), and secure wireless data transmission.

In this post we look at direct-sequence spread-spectrum (DSSS) signals, which can be usefully modeled as a kind of PSK signal. DSSS signals are used in a variety of real-world situations, including the familiar CDMA and WCDMA signals, covert signaling, and GPS. My colleague Antonio Napolitano has done some work on a large class of DSSS signals (The Literature [R11, R17, R95]), resulting in formulas for their spectral correlation functions, and I’ve made some remarks about their cyclostationary properties myself here and there (My Papers [16]).

We are all susceptible to using bad mathematics to get us where we want to go. Here is an example.

I recently came across the 2014 paper in the title of this post. I mentioned it briefly in the post on the periodogram. But I’m going to talk about it a bit more here because this is the kind of thing that makes things harder for people trying to learn about cyclostationarity, which eventually leads to the need for something like the CSP Blog as a corrective.

The idea behind the paper is that it would be nice to avoid the need for prior knowledge of cycle frequencies when using cycle detectors or the like. If you could just compute the entire spectral correlation function, then collapse it by integrating (summing) over frequency , then you’d have a one-dimensional function of cycle frequency and you could then process that function inexpensively to perform detection and classification tasks.

The periodogram is the scaled magnitude-squared finite-time Fourier transform of something. It is as random as its input–it never converges to the power spectrum.

I’ve been reviewing a lot of technical papers lately and I’m noticing that it is becoming common to assert that the limiting form of the periodogram is the power spectral density or that the limiting form of the cyclic periodogram is the spectral correlation function. This isn’t true. These functions do not become, in general, less random (erratic) as the amount of data that is processed increases without limit. On the contrary, they always have large variance. Some form of averaging (temporal or spectral) is needed to permit the periodogram to converge to the power spectrum or the cyclic periodogram to converge to the spectral correlation function (SCF).

In particular, I’ve been seeing things like this:

where is the Fourier transform of on . In other words, the usual cyclic periodogram we talk about here on the CSP blog. See, for example, The Literature [R71], Equation (3).

How does the cyclostationarity of a signal change when it is subjected to common signal-processing operations like addition, multiplication, and convolution?

It is often useful to know how a signal processing operation affects the probabilistic parameters of a random signal. For example, if I know the power spectral density (PSD) of some signal , and I filter it using a linear time-invariant transformation with impulse response function , producing the output , then what is the PSD of ? This input-output relationship is well known and quite useful. The relationship is

Because the mathematical models of real-world communication signals can be constructed by subjecting idealized textbook signals to various signal-processing operations, such as filtering, it is of interest to us here at the CSP Blog to know how the spectral correlation function of the output of a signal processor is related to the spectral correlation function for the input. Similarly, we’d like to know such input-output relationships for the cyclic cumulants and the cyclic polyspectra.

Another benefit of knowing these CSP input-output relationships is that they tend to build insight into the meaning of the probabilistic parameters. For example, in the PSD input-output relationship (1), we already know that the transfer function at scales the input frequency component at by the complex number . So it makes sense that the PSD at is scaled by the squared magnitude of . If the filter transfer function is zero at , then the density of averaged power at should vanish too.

So, let’s look at this kind of relationship for CSP parameters. All of these results can be found, usually with more mathematical detail, in My Papers [6, 13].

CSP shines when the problem involves strong noise or cochannel interference. Here we look at CSP-based signal-presence detection as a function of SNR and SIR.

Let’s take a look at a class of signal-presence detectors that exploit cyclostationarity and in doing so illustrate the good things that can happen with CSP whenever cochannel interference is present, or noise models deviate from simple additive white Gaussian noise (AWGN). I’m referring to the cycle detectors, the first CSP algorithms I ever studied.