A Challenge for the Machine Learners

A while back I was working with some machine-learning researchers on the problem of carrier-frequency-offset (CFO) estimation. The CFO is the residual carrier frequency exhibited by an imperfectly downconverted radio-frequency signal. I’ll describe it in more detail below. The idea behind the collaboration was to find the SNR, SINR, block-length, etc., ranges for which machine-learning algorithms outperform more traditional approaches, such as those involving exploitation of cyclostationarity. If we’re going to get rid of the feature-based approaches used by experts, then we’d better make sure that the machines can do at least as well as those approaches for the problems typically considered by the experts.

Continue reading

CSP Estimators: The FFT Accumulation Method

Let’s look at another spectral correlation function estimator: the FFT Accumulation Method (FAM). This estimator is in the time-smoothing category, is exhaustive in that it is designed to compute estimates of the spectral correlation function over its entire principal domain, and is efficient, so that it is a competitor to the Strip Spectral Correlation Analyzer (SSCA) method. I implemented my version of the FAM by using the paper by Roberts et al (The Literature [R4]). If you follow the equations closely, you can successfully implement the estimator from that paper. The tricky part, as with the SSCA, is correctly associating the outputs of the coded equations to their proper \displaystyle (f, \alpha) values.

Continue reading

‘Can a Machine Learn the Fourier Transform?’ Redux, Plus Relevant Comments on a Machine-Learning Paper by M. Kulin et al.

I first considered whether a machine (neural network) could learn the (64-point, complex-valued)  Fourier transform in this post. I used MATLAB’s Neural Network Toolbox and I failed to get good learning results because I did not properly set the machine’s hyperparameters. A kind reader named Vito Dantona provided a comment to that original post that contained good hyperparameter selections, and I’m going to report the new results here in this post.

Since the Fourier transform is linear, the machine should be set up to do linear processing. It can’t just figure that out for itself. Once I used Vito’s suggested hyperparameters to force the machine to be linear, the results became much better:

Continue reading

Computational Costs for Spectral Correlation Estimators

Let’s look at the computational costs for spectral-correlation analysis using the three main estimators I’ve previously described on the CSP Blog: the frequency-smoothing method (FSM), the time-smoothing method (TSM), and the strip spectral correlation analyzer (SSCA).

We’ll see that the FSM and TSM are the low-cost options when estimating the spectral correlation function for a few cycle frequencies and that the SSCA is the low-cost option when estimating the spectral correlation function for many cycle frequencies. That is, the TSM and FSM are good options for directed analysis using prior information (values of cycle frequencies) and the SSCA is a good option for exhaustive blind analysis, for which there is no prior information available.

Continue reading

CSP Patent: Tunneling

My colleague Dr. Apurva Mody (of BAE Systems, IEEE 802.22, and the WhiteSpace Alliance) and I have received a patent on a CSP-related invention we call tunneling. The US Patent is 9,755,869 and you can read it here or download it here. We’ve got a journal paper in review and a 2013 MILCOM conference paper (My Papers [38]) that discuss and illustrate the involved ideas. I’m also working on a CSP Blog post on the topic.

Update December 28, 2017: Our Tunneling journal paper has been accepted for publication in the journal IEEE Transactions on Cognitive Communications and Networking. You can download the pre-publication version here.

Continue reading

Resolution in Time, Frequency, and Cycle Frequency for CSP Estimators

In this post, we look at the ability of various CSP estimators to distinguish cycle frequencies, temporal changes in cyclostationarity, and spectral features. These abilities are quantified by the resolution properties of CSP estimators.

Resolution Parameters in CSP: Preview

Consider performing some CSP estimation task, such as using the frequency-smoothing method, time-smoothing method, or strip spectral correlation analyzer method of estimating the spectral correlation function. The estimate employs T seconds of data.

Then the temporal resolution \Delta t of the estimate is approximately T, the cycle-frequency resolution \Delta \alpha is about 1/T, and the spectral resolution \Delta f depends strongly on the particular estimator and its parameters. The resolution product \Delta f \Delta t was discussed in this post. The fundamental result for the resolution product is that it must be very much larger than unity in order to obtain an SCF estimate with low variance.

Continue reading

CSP Estimators: Cyclic Temporal Moments and Cumulants

In this post we discuss ways of estimating n-th order cyclic temporal moment and cumulant functions. Recall that for n=2, cyclic moments and cyclic cumulants are usually identical. They differ when the signal contains one or more finite-strength additive sine-wave components. In the common case when such components are absent (as in our recurring numerical example involving rectangular-pulse BPSK), they are equal and they are also equal to the conventional cyclic autocorrelation function provided the delay vector is chosen appropriately.

The more interesting case is when the order n is greater than 2. Most communication signal models possess odd-order moments and cumulants that are identically zero, so the first non-trivial order n greater than 2 is 4. So our estimation task is to estimate n-th order temporal moment and cumulant functions for n \ge 4 using a sampled-data record of length T.

Continue reading