Let’s look at another spectral correlation function estimator: the FFT Accumulation Method (FAM). This estimator is in the time-smoothing category, is exhaustive in that it is designed to compute estimates of the spectral correlation function over its entire principal domain, and is efficient, so that it is a competitor to the Strip Spectral Correlation Analyzer (SSCA) method. I implemented my version of the FAM by using the paper by Roberts *et al* (The Literature [R4]). If you follow the equations closely, you can successfully implement the estimator from that paper. The tricky part, as with the SSCA, is correctly associating the outputs of the coded equations to their proper values.

# Real-World Signals

# ‘Can a Machine Learn the Fourier Transform?’ Redux, Plus Relevant Comments on a Machine-Learning Paper by M. Kulin et al.

I first considered whether a machine (neural network) could learn the (64-point, complex-valued) Fourier transform in this post. I used MATLAB’s Neural Network Toolbox and I failed to get good learning results because I did not properly set the machine’s hyperparameters. A kind reader named Vito Dantona provided a comment to that original post that contained good hyperparameter selections, and I’m going to report the new results here in this post.

Since the Fourier transform is linear, the machine should be set up to do linear processing. It can’t just figure that out for itself. Once I used Vito’s suggested hyperparameters to force the machine to be linear, the results became much better:

# CSP Patent: Tunneling

My colleague Dr. Apurva Mody (of BAE Systems, IEEE 802.22, and the WhiteSpace Alliance) and I have received a patent on a CSP-related invention we call tunneling. The US Patent is 9,755,869 and you can read it here or download it here. We’ve got a journal paper in review and a 2013 MILCOM conference paper (My Papers [38]) that discuss and illustrate the involved ideas. I’m also working on a CSP Blog post on the topic.

* Update December 28, 2017*: Our Tunneling journal paper has been accepted for publication in the journal IEEE Transactions on Cognitive Communications and Networking. You can download the pre-publication version here.

# Automatic Spectral Segmentation

In this post, I discuss a signal-processing algorithm that has almost nothing to do with cyclostationary signal processing. Almost. The topic is automated spectral segmentation, which I also call band-of-interest (BOI) detection. When attempting to perform automatic radio-frequency scene analysis (RFSA), we may be confronted with a data block that contains multiple signals in a large number of distinct frequency subbands. Moreover, these signals may be turning on an off within the data block. To apply our cyclostationary signal processing tools effectively, we would like to isolate these signals in time and frequency to the greatest extent possible using linear time-invariant filtering (for separating in the frequency dimension) and time-gating (for separating in the time dimension). Then the isolated signal components can be processed serially.

It is very important to remember that even perfect spectral and temporal segmentation will not solve the cochannel-signal problem. It is perfectly possible that an isolated subband will contain more that one cochannel signal.

The basics of my BOI-detection approach are published in a 2007 conference paper (My Papers [32]). I’ll describe this basic approach, illustrate it with examples relevant to RFSA, and also provide a few extensions of interest, including one that relates to cyclostationary signal processing.

# Cyclostationarity of Direct-Sequence Spread-Spectrum Signals

In this post we look at direct-sequence spread-spectrum (DSSS) signals, which can be usefully modeled as a kind of PSK signal. DSSS signals are used in a variety of real-world situations, including the familiar CDMA and WCDMA signals, covert signaling, and GPS. My colleague Antonio Napolitano has done some work on a large class of DSSS signals (The Literature [R11, R17, R95]), resulting in formulas for their spectral correlation functions, and I’ve made some remarks about their cyclostationary properties myself here and there (My Papers [16]).

A good thing, from the point of view of modulation recognition, about DSSS signals is that they are easily distinguished from other PSK and QAM signals by their spectral correlation functions. Whereas most PSK/QAM signals have only a single non-conjugate cycle frequency, and no conjugate cycle frequencies, DSSS signals have many non-conjugate cycle frequencies and in some cases also have many conjugate cycle frequencies.

# Cumulant (4, 2) is a Good Discriminator?

Let’s talk about another published paper on signal detection involving cyclostationarity and/or cumulants. This one is called “*Energy-Efficient Processor **for Blind Signal Classification in Cognitive Radio Networks*,” (The Literature [R69]), and is authored by UCLA researchers E. Rebeiz and four colleagues.

My focus on this paper it its idea that broad signal-type classes, such as direct-sequence spread-spectrum (DSSS), QAM, and OFDM can be reliably distinguished by the use of a single number: the fourth-order cumulant with two conjugated terms. This kind of cumulant is referred to as the cumulant here at the CSP Blog, and in the paper, because the order is and the number of conjugated terms is .

# Modulation Recognition Using Cyclic Cumulants, Part I: Problem Description and Variants

In this post, we start a discussion of what I consider the ultimate application of the theory of cyclostationary signals: Automatic Modulation Recognition. My relevant papers are My Papers [16,17,25,26,28,30,32,33,38,43,44].

# The Cycle Detectors

Let’s take a look at a class of signal-presence detectors that exploit cyclostationarity and in doing so illustrate the good things that can happen with CSP whenever cochannel interference is present, or noise models deviate from simple additive white Gaussian noise (AWGN). I’m referring to the *cycle detectors*, the first CSP algorithms I ever studied.

# Radio-Frequency Scene Analysis

So why do I obsess over cyclostationary signals and cyclostationary signal processing? What’s the big deal, in the end? In this post I discuss my view of the ultimate use of cyclostationary signal processing (CSP): Radio-Frequency Scene Analysis (RFSA). Eventually, I hope to create a kind of Star Trek Tricorder for RFSA.

# CSP-Based Time-Difference-of-Arrival Estimation

Let’s discuss an application of cyclostationary signal processing (CSP): time-delay estimation. The idea is that sampled data is available from two antennas (sensors), and there is a common signal component in each data set. The signal component in one data set is the time-delayed or time-advanced version of the component in the other set. This can happen when a plane-wave radio frequency (RF) signal propagates and impinges on the two antennas. In such a case, the RF signal arrives at the sensors with a time difference proportional to the distance between the sensors along the direction of propagation, and so the time-delay estimation is also commonly referred to as time-difference-of-arrival (TDOA) estimation.

Consider the diagram shown to the right. A distant transmitter emits a signal that is well-modeled as a plane wave once it reaches our two receivers. *An individual wavefront of the signal arrives at the two sensors at different times.*

The line segment AB is perpendicular to the direction of propagation for the RF signal. The angle is called the angle of arrival (AOA). If we could estimate the AOA, we can tell the direction from which the signal arrives, which could be useful in a variety of settings. Since the triangle ABC is a right triangle, we have

When , the wavefronts first strike receiver 2, then must propagate over meters before striking receiver 1. On the other hand, when , each wavefront strikes the two receivers simultaneously. In the former case, the TDOA is maximum, and in the latter it is zero. The TDOA can be negative too, so that azimuthal degrees can be determined by estimating the TDOA.

In general, the wavefront must traverse meters between striking receiver 2 and striking receiver 1,

Assuming the speed of propagation is meters/sec, the TDOA is given by

In this post I’ll review several methods of TDOA estimation, some of which employ CSP and some of which do not. We’ll see some of the advantages and disadvantages of the various classes of methods through inspection, simulation, and application to collected data.