SPTK Addendum: Problems with resampling using MATLAB’s resample.m

Sometimes MATLAB’s resample.m gives results that can be trouble for subsequent CSP.

Previous SPTK Post: Echo Detection Next SPTK Post: TBD

In this brief Signal Processing Toolkit note, I warn you about relying on resample.m to increase the sampling rate of your data. It works fine a lot of the time, but when the signal has significant energy near the band edges, it does not.

Continue reading “SPTK Addendum: Problems with resampling using MATLAB’s resample.m”

Is Radio-Frequency Scene Analysis a Wicked Problem?

By the pricking of my thumbs, something wicked this way comes …

I attended a conference on dynamic spectrum access in 2017 and participated in a session on automatic modulation recognition. The session was connected to a live competition within the conference where participants would attempt to apply their modulation-recognition system to signals transmitted in the conference center by the conference organizers. Like a grand modulation-recognition challenge but confined to the temporal, spectral, and spatial constraints imposed by the short-duration conference.

What I didn’t know going in was the level of frustration on the part of the machine-learner organizers regarding the seemingly inability of signal-processing and machine-learning researchers to solve the radio-frequency scene analysis problem once and for all. The basic attitude was ‘if the image-processors can have the AlexNet image-recognition solution, and thereby abandon their decades-long attempt at developing serious mathematics-based image-processing theory and practice, why haven’t we solved the RFSA problem yet?’

Continue reading “Is Radio-Frequency Scene Analysis a Wicked Problem?”

PSK/QAM Cochannel Data Set for Modulation Recognition Researchers [CSPB.ML.2023]

The next step in dataset complexity at the CSP Blog: cochannel signals.

I’ve developed another data set for use in assessing modulation-recognition algorithms (machine-learning-based or otherwise) that is more complex than the original sets I posted for the ML Challenge (CSPB.ML.2018 and CSPB.ML.2022). Half of the new dataset consists of one signal in noise and the other half consists of two signals in noise. In most cases the two signals overlap spectrally, which is a signal condition called cochannel interference.

We’ll call it CSPB.ML.2023.

Continue reading “PSK/QAM Cochannel Data Set for Modulation Recognition Researchers [CSPB.ML.2023]”

CSP Community Spotlight: A Publicly Available python-Based SCF Estimator

The CSP Blog recently received a comment from a signal processor that needed a small amount of debugging help with their python spectral correlation estimator code.

The code uses a form of the time-smoothing method and aims to compute and plot the spectral correlation estimate as well as the corresponding coherence estimate. What is cool about this code is that it is clear, well-organized, on github, and is written using Jupyter Notebook. Moreover, there is a Google Colab function so that anyone can run the code from a chrome browser and see the results, even a python newbie like me. Tres moderne.

Continue reading “CSP Community Spotlight: A Publicly Available python-Based SCF Estimator”

Desultory CSP: The Human-Genome Edition

And now for something completely different …

Let’s take an excursion outside of “Understanding and Using the Statistics of Communication Signals” by looking at a naturally occurring signal: the human genome.

Continue reading “Desultory CSP: The Human-Genome Edition”

Critic and Skeptic Roundup

“That was excellently observed,” say I, when I read a passage in an author, where his opinion agrees with mine. When we differ, there I pronounce him to be mistaken.
– Jonathan Swift

Update November 2022: Added Professor Dave and Michael Woudenberg. (How could I have forgotten Dave in the first post??)

***

A big part of the CSP Blog in the past couple years has been a critical analysis of relevant engineering literature. By ‘relevant’ I mean relevant to CSP and its main applications of presence detection, modulation recognition, parameter estimation, source separation, and array processing. So I’ve produced many ‘Comments On …’ posts lately, and this tends to solidify my reputation as a critic rather than as a creative engineer. However, the CSP and SPTK posts on the CSP Blog still vastly outnumber the ‘Comments On …’ posts. We’ll see what balance the future brings.

But if you like to see critical reviews of current science, technology, and engineering work, there are others out there doing it much better than me and doing it for much more important topics, such as artificial intelligence, particle physics, cosmology, and social media.

So here in this post I want to introduce you, should you care to view the rest of the post, to other critics that you might enjoy, and might use as a balance against the typically credulous mainstream media and those pundits, bloggers, and YouTubers that do more promoting than analyzing.

Continue reading “Critic and Skeptic Roundup”

‘Comment of the Month’ on the CSP Blog

Introducing swag for the best CSP-Blog commenters.

Update January 2023: You can find the list of winners on this page.


The comments that CSP Blog readers have made over the past six years are arguably the most helpful part of the Blog for do-it-yourself CSP practitioners. In those comments, my many errors have been revealed, which then has permitted me to attempt post corrections. Many unclear aspects of a post have been clarified after pondering a reader’s comment. At least one comment has been elevated to a post of its own.

The readership of the CSP Blog has been steadily growing since its inception in 2015, but the ratio of page views to comments remains huge–the vast majority of readers do not comment. This is understandable and perfectly acceptable. I rarely comment on any of the science and engineering blogs that I frequent. Nevertheless, I would like to encourage more commenting and also reward it.

Continue reading “‘Comment of the Month’ on the CSP Blog”

The Domain Expertise Trap

The softwarization of engineering continues apace…

I keep seeing people write things like “a major disadvantage of the technique for X is that it requires substantial domain expertise.” Let’s look at a recent good paper that makes many such remarks and try to understand what it could mean, and if having or getting domain expertise is actually a bad thing. Spoiler: It isn’t.

The paper under the spotlight is The Literature [R174], “Interference Suppression Using Deep Learning: Current Approaches and Open Challenges,” published for the nonce on arxiv.org. I’m not calling this post a “Comments On …” post, because once I extract the (many) quotes about domain expertise, I’m leaving the paper alone. The paper is a good paper and I expect it to be especially useful for current graduate students looking to make a contribution in the technical area where machine learning and RF signal processing overlap. I especially like Figure 1 and the various Tables.

Continue reading “The Domain Expertise Trap”

Wow, Elsevier, Just … Wow. Comments On “Cyclic Correntropy: Properties and the Application in Symbol Rate Estimation Under Alpha-Stable Distributed Noise,” by S. Luan et al.

Can we fix peer review in engineering by some form of payment to reviewers?

Let’s talk about another paper about cyclostationarity and correntropy. I’ve critically reviewed two previously, which you can find here and here. When you look at the correntropy as applied to a cyclostationary signal, you get something called cyclic correntropy, which is not particularly useful except if you don’t understand regular cyclostationarity and some aspects of garden-variety signal processing. Then it looks great.

But this isn’t a post that primarily takes the authors of a paper to task, although it does do that. I want to tell the tale to get us thinking about what ‘peer’ could mean, these days, in ‘peer-reviewed paper.’ How do we get the best peers to review our papers?

Let’s take a look at The Literature [R173].

Continue reading “Wow, Elsevier, Just … Wow. Comments On “Cyclic Correntropy: Properties and the Application in Symbol Rate Estimation Under Alpha-Stable Distributed Noise,” by S. Luan et al.”

SPTK: Sampling and The Sampling Theorem

The basics of how to convert a continuous-time signal into a discrete-time signal without losing information in the process. Plus, how the choice of sampling rate influences CSP.

Previous SPTK Post: Random Processes Next SPTK Post: Echo Detection

In this Signal Processing ToolKit post we take a close look at the basic sampling theorem used daily by signal-processing engineers. Application of the sampling theorem is a way to choose a sampling rate for converting an analog continuous-time signal to a digital discrete-time signal. The former is ubiquitous in the physical world–for example all the radio-frequency signals whizzing around in the air and through your body right now. The latter is ubiquitous in the computing-device world–for example all those digital-audio files on your Discman Itunes Ipod DVD Smartphone Cloud Neuralink Singularity.

So how are those physical real-world analog signals converted to convenient lists of finite-precision numbers that we can apply arithmetic to? For that’s all [digital or cyclostationary] signal processing is at bottom: arithmetic. You might know the basic rule-of-thumb for choosing a sampling rate: Make sure it is at least twice as big as the largest frequency component in the analog signal undergoing the sampling. But why, exactly, and what does ‘largest frequency component’ mean?

Continue reading “SPTK: Sampling and The Sampling Theorem”

Update on J. Antoni’s Fast Spectral Correlation Estimator

Let’s take a look at an even faster spectral correlation function estimator. How useful is it for CSP applications in communications?

Reader Gideon pointed out that Antoni had published a paper a year after the paper that I considered in my first Antoni post. This newer paper, The Literature [R172], promises a faster fast spectral correlation estimator, and it delivers on that according to the analysis in the paper. However, I think the faster fast spectral correlation estimator is just as limited as the slower fast spectral correlation estimator when considered in the context of communication-signal processing.

And, to be fair, Antoni doesn’t often consider the context of communication-signal processing. His favored application is fault detection in mechanical systems with rotating parts. But I still don’t think the way he compares his fast and faster estimators to conventional estimators is fair. The reason is that his estimators are both severely limited in the maximum cycle frequency that can be processed, relative to the maximum cycle frequency that is possible.

Let’s take a look.

Continue reading “Update on J. Antoni’s Fast Spectral Correlation Estimator”

One Last Time …

We take a quick look at a fourth DeepSig dataset called 2016.04C.multisnr.tar.bz2 in the context of the data-shift problem in machine learning.

And if we get this right,

We’re gonna teach ’em how to say

Goodbye …

You and I.

Lin-Manuel Miranda, “One Last Time,” Hamilton

I didn’t expect to have to do this, but I am going to analyze yet another DeepSig dataset. One last time. This one is called 2016.04C.multisnr.tar.bz2, and is described thusly on the DeepSig website:

Figure 1. Description of various DeepSig data sets found on the DeepSig website as of November 2021.

I’ve analyzed the 2018 dataset here, the RML2016.10b.tar.bz2 dataset here, and the RML2016.10a.tar.bz2 dataset here.

Now I’ve come across a manuscript-in-review in which both the RML2016.10a and RML2016.04c data sets are used. The idea is that these two datasets represent two sufficiently distinct datasets so that they are good candidates for use in a data-shift study involving trained neural-network modulation-recognition systems.

The data-shift problem is, as one researcher puts it:

Data shift or data drift, concept shift, changing environments, data fractures are all similar terms that describe the same phenomenon: the different distribution of data between train and test sets

Georgios Sarantitis

But … are they really all that different?

Continue reading “One Last Time …”

Comments on “Proper Definition and Handling of Dirac Delta Functions” by C. Candan.

An interesting paper on the true nature of the impulse function we use so much in signal processing.

The impulse function, also called the Dirac delta function, is commonly used in statistical signal processing, and on the CSP Blog (examples: representations and transforms). I think we’re a bit casual about this usage, and perhaps none of us understand impulses as well as we might.

Enter C. Candan and The Literature [R155].

Continue reading “Comments on “Proper Definition and Handling of Dirac Delta Functions” by C. Candan.”

Wave Walker DSP: A New Kind of Engineering Blog

A colleague has started up a website with lots of content on digital signal processing: Wave Walker DSP. This is, to me, a new kind of engineering blog in that it blends DSP mathematics and practice with philosophy. That’s an intriguing complement to my engineering blog, which I view as blending DSP mathematics with criticism.

Continue reading “Wave Walker DSP: A New Kind of Engineering Blog”

The Principal Domain for the Spectral Correlation Function

What are the ranges of spectral frequency and cycle frequency that we need to consider in a discrete-time/discrete-frequency setting for CSP?

Let’s talk about that diamond-shaped region in the (f, \alpha) plane we so often see associated with CSP. I’m talking about the principal domain for the discrete-time/discrete-frequency spectral correlation function. Where does it come from? Why do we care? When does it come up?

Continue reading “The Principal Domain for the Spectral Correlation Function”

J. Antoni’s Fast Spectral Correlation Estimator

The Fast Spectral Correlation estimator is a quick way to find small cycle frequencies. However, its restrictions render it inferior to estimators like the SSCA and FAM.

In this post we take a look at an alternative CSP estimator created by J. Antoni et al (The Literature [R152]). The paper describing the estimator can be found here, and you can get some corresponding MATLAB code, posted by the authors, here if you have a Mathworks account.

Continue reading “J. Antoni’s Fast Spectral Correlation Estimator”

SPTK (and CSP): Random Processes

The merging of conventional probability theory with signal theory leads to random processes, also known as stochastic processes. The ideas involved with random processes are central to cyclostationary signal processing.

Previous SPTK Post: Examples of Random Variables Next SPTK Post: The Sampling Theorem

In this Signal Processing ToolKit post, I provide an introduction to the concept and use of random processes (also called stochastic processes). This is my perspective on random processes, so although I’ll introduce and use the conventional concepts of stationarity and ergodicity, I’ll end up focusing on the differences between stationary and cyclostationary random processes. The goal is to illustrate those differences with informative graphics and videos; to build intuition in the reader about how the cyclostationarity property comes about, and about how the property relates to the more abstract mathematical object of a random process on one hand and to the concrete data-centric signal on the other.

So … this is the first SPTK post that is also a CSP post.

Continue reading “SPTK (and CSP): Random Processes”

The Signal-Processing Equivalent of Resume-Padding? Comments on “A Robust Modulation Classification Method Using Convolutional Neural Networks” by S. Zhou et al.

Does the use of ‘total SNR’ mislead when the fractional bandwidth is very small? What constitutes ‘weak-signal processing?’

Or maybe “Comments on” here should be “Questions on.”

In a recent paper in EURASIP Journal on Advances in Signal Processing (The Literature [R165]), the authors tackle the problem of machine-learning-based modulation recognition for highly oversampled rectangular-pulse digital signals. They don’t use the DeepSig datasets (one, two, three, four), but their dataset description and use of ‘signal-to-noise ratio’ leaves a lot to be desired. Let’s take a brief look. See if you agree with me that the touting of their results as evidence that they can reliably classify signals with ‘SNRs of -10 dB’ is unwarranted and misleading.

Continue reading “The Signal-Processing Equivalent of Resume-Padding? Comments on “A Robust Modulation Classification Method Using Convolutional Neural Networks” by S. Zhou et al.”

SPTK: Examples of Random Variables in Communication-Signal Contexts

Some examples of random variables encountered in communication systems, channels, and mathematical models.

Previous SPTK Post: Random Variables Next SPTK Post: Random Processes

In this Signal Processing ToolKit post, we continue our exploration of random variables. Here we look at specific examples of random variables, which means that we focus on concrete well-defined cumulative distribution functions (CDFs) and probability density functions (PDFs). Along the way, we show how to use some of MATLAB’s many random-number generators, which are functions that produce one or more instances of a random variable with a specified PDF.

Continue reading “SPTK: Examples of Random Variables in Communication-Signal Contexts”

SPTK: Random Variables

Our toolkit expands to include basic probability theory.

Previous SPTK Post: Complex Envelopes Next SPTK Post: Examples of Random Variables

In this Signal Processing ToolKit post, we examine the concept of a random variable.

Continue reading “SPTK: Random Variables”