The Ambiguity Function and the Cyclic Autocorrelation Function: Are They the Same Thing?

To-may-to, to-mah-to?

Let’s talk about ambiguity and correlation. The ambiguity function is a core component of radar signal processing practice and theory. The autocorrelation function and the cyclic autocorrelation function, are key elements of generic signal processing and cyclostationary signal processing, respectively. Ambiguity and correlation both apply a quadratic functional to the data or signal of interest, and they both weight that quadratic functional by a complex exponential (sine wave) prior to integration or summation.

Are they the same thing? Well, my answer is both yes and no.

Continue reading “The Ambiguity Function and the Cyclic Autocorrelation Function: Are They the Same Thing?”

CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano

My friend and colleague Antonio Napolitano has just published a new book on cyclostationary signals and cyclostationary signal processing:

Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations, Academic Press/Elsevier, 2020, ISBN: 978-0-08-102708-0. The book is a comprehensive guide to the structure of cyclostationary random processes and signals, and it also provides pointers to the literature on many different applications. The book is mathematical in nature; use it to deepen your understanding of the underlying mathematics that make CSP possible.

You can check out the book on amazon.com using the following link:

Cyclostationary Processes and Time Series

Continue reading “CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano”

On Impulsive Noise, CSP, and Correntropy

And I still don’t understand how a random variable with infinite variance can be a good model for anything physical. So there.

I’ve seen several published and pre-published (arXiv.org) technical papers over the past couple of years on the topic of cyclic correntropy (The Literature [R123-R127]). I first criticized such a paper ([R123]) here, but the substance of that review was about my problems with the presented mathematics, not impulsive noise and its effects on CSP. Since the papers keep coming, apparently, I’m going to put down some thoughts on impulsive noise and some evidence regarding simple means of mitigation in the context of CSP. Preview: I don’t think we need to go to the trouble of investigating cyclic correntropy as a means of salvaging CSP from the evil clutches of impulsive noise.

Continue reading “On Impulsive Noise, CSP, and Correntropy”

Sponsoring the CSP Blog

I’ve decided to solicit donations to the CSP Blog through PayPal. For the past four years, I’ve been writing blog posts and doing my best to answer comments at no cost to my readers. And it has turned out very well indeed, thanks to all the people that stop by to read and contribute.

Continue reading “Sponsoring the CSP Blog”

For the Beginner at CSP

Here is a list of links to CSP Blog posts that I think are suitable for a beginner: read them in the order given.

How to Obtain Help from the CSP Blog

Introduction to CSP

How to Create a Simple Cyclostationary Signal: Rectangular-Pulse BPSK

The Cyclic Autocorrelation Function

The Spectral Correlation Function

The Cyclic Autocorrelation for BPSK

Continue reading “For the Beginner at CSP”

A Gallery of Cyclic Correlations

For your delectation.

There are some situations in which the spectral correlation function is not the preferred measure of (second-order) cyclostationarity. In these situations, the cyclic autocorrelation (non-conjugate and conjugate versions) may be much simpler to estimate and work with in terms of detector, classifier, and estimator structures. So in this post, I’m going to provide plots of the cyclic autocorrelation for each of the signals in the spectral correlation gallery post. The exceptions are those signals I called feature-rich in the spectral correlation gallery post, such as LTE and radar. Recall that such signals possess a large number of cycle frequencies, and plotting their three-dimensional spectral correlation surface is not helpful as it is difficult to interpret with the human eye. So for the cycle-frequency patterns of feature-rich signals, we’ll rely on the stem-style (cyclic-domain profile) plots that I used in the gallery post.

Continue reading “A Gallery of Cyclic Correlations”

On The Shoulders

What modest academic success I’ve had in the area of cyclostationary signal theory and cyclostationary signal processing is largely due to the patient mentorship of my doctoral adviser, William (Bill) Gardner, and the fact that I was able to build on an excellent foundation put in place by Gardner, his advisor Lewis Franks, and key Gardner students such as William (Bill) Brown.

Continue reading “On The Shoulders”

100,000 Page Views!

The CSP Blog has reached 100,000 page views! Also, a while back it passed the “20,000 visitors” milestone. All of this for 53 posts and 10 pages. More to come!

yearly_totals

I started the CSP Blog in late 2015, so it has taken a bit over three years to get to 100,000 views. I don’t know if that should be considered fast or slow. But I like it anyway.

I want to thank each and every one of the visitors to the CSP Blog. It has reached so many more people that I though it ever would when I started it.

Thank you for all your clicks, comments, emails, and downloads! If you’d like, leave a comment to this post if you have an idea for a post you’d like to see.

Below the fold, some graphics that show the vital statistics of the CSP Blog as of the 100,000 page-view milestone.

Continue reading “100,000 Page Views!”

Can a Machine Learn a Power Spectrum Estimator?

Learning machine learning for radio-frequency signal-processing problems, continued.

I continue with my foray into machine learning (ML) by considering whether we can use widely available ML tools to create a machine that can output accurate power spectrum estimates. Previously we considered the perhaps simpler problem of learning the Fourier transform. See here and here.

Along the way I’ll expose my ignorance of the intricacies of machine learning and my apparent inability to find the correct hyperparameter settings for any problem I look at. But, that’s where you come in, dear reader. Let me know what to do!

Continue reading “Can a Machine Learn a Power Spectrum Estimator?”

Data Set for the Machine-Learning Challenge

A PSK/QAM/SQPSK data set with randomized symbol rate, inband SNR, carrier-frequency offset, and pulse roll-off.

Update September 2020. I made a mistake when I created the signal-parameter “truth” files signal_record.txt and signal_record_first_20000.txt. Like the DeepSig RML data sets that I analyzed on the CSP Blog here and here, the SNR parameter in the truth files did not match the actual SNR of the signals in the data files. I’ve updated the truth files and the links below. You can still use the original files for all other signal parameters, but the SNR parameter was in error.

Update July 2020. I originally posted 20,000 signals in the posted data set. I’ve now added another 92,000 for a total of 112,000 signals. The original signals are contained in Batches 1-5, the additional signals in Batches 6-28. I’ve placed these additional Batches at the end of the post to preserve the original post’s content.

Continue reading “Data Set for the Machine-Learning Challenge”

MATLAB’s SSCA: commP25ssca.m

In this short post, I describe some errors that are produced by MATLAB’s strip spectral correlation analyzer function commP25ssca.m. I don’t recommend that you use it; far better to create your own function.

Continue reading “MATLAB’s SSCA: commP25ssca.m”

How we Learned CSP

We learned it using abstractions involving various infinite quantities. Can a machine learn it without that advantage?

This post is just a blog post. Just some guy on the internet thinking out loud. If you have relevant thoughts or arguments you’d like to advance, please leave them in the Comments section at the end of the post.

How did we, as people not machines, learn to do cyclostationary signal processing? We’ve successfully applied it to many real-world problems, such as weak-signal detection, interference-tolerant detection, interference-tolerant time-delay estimation, modulation recognition, joint multiple-cochannel-signal modulation recognition (My Papers [25,26,28,38,43]), synchronization (The Literature [R7]), beamforming (The Literature [R102,R103]), direction-finding (The Literature [R104-R106]), detection of imminent mechanical failures (The Literature [R017-R109]), linear time-invariant system identification (The Literature [R110-R115]), and linear periodically time-variant filtering for cochannel signal separation (FRESH filtering) (My Papers [45], The Literature [R6]).

How did this come about? Is it even interesting to ask the question? Well, it is to me. I ask it because of the current hot topic in signal processing: machine learning. And in particular, machine learning applied to modulation recognition (see here and here). The machine learners want to capitalize on the success of machine learning applied to image recognition by directly applying the same sorts of image-recognition techniques to the problem of automatic type-recognition for human-made electromagnetic waves.

Continue reading “How we Learned CSP”

Useful Signal Processing Blogs or Websites?

Update November 1, 2018: A site called feedspot (blog.feedspot.com) contacted me to tell me I made their “Top 10 Digital Signal Processing Blogs, Websites & Newsletters in 2018” list. Weirdly, there are only eight blogs in the list. What’s most important for this post is the other signal processing blogs on the list. So check it out if you are looking for other sources of online signal processing information. Enjoy!  blog.feedspot.com/digital_signal_processing_blogs

***             ***             ***

Some of my CSP posts get a lot of comments asking for help, and that’s a good thing. I continue to try to help readers to help themselves. Throughout my posts, I link terms and methods to webpages that provide tutorial or advanced information, and most of the time that means wikipedia.

But I’d like to be able to refer readers to good websites that discuss related aspects of signal processing and communication signals, such as filtering, spectrum estimation, mathematical models, Fourier analysis, etc. I’ve had little success with the Google searches I’ve tried.

Continue reading “Useful Signal Processing Blogs or Websites?”

CSP Estimators: The FFT Accumulation Method

An alternative to the strip spectral correlation analyzer.

Let’s look at another spectral correlation function estimator: the FFT Accumulation Method (FAM). This estimator is in the time-smoothing category, is exhaustive in that it is designed to compute estimates of the spectral correlation function over its entire principal domain, and is efficient, so that it is a competitor to the Strip Spectral Correlation Analyzer (SSCA) method. I implemented my version of the FAM by using the paper by Roberts et al (The Literature [R4]). If you follow the equations closely, you can successfully implement the estimator from that paper. The tricky part, as with the SSCA, is correctly associating the outputs of the coded equations to their proper \displaystyle (f, \alpha) values.

Continue reading “CSP Estimators: The FFT Accumulation Method”

‘Can a Machine Learn the Fourier Transform?’ Redux, Plus Relevant Comments on a Machine-Learning Paper by M. Kulin et al.

Reconsidering my first attempt at teaching a machine the Fourier transform with the help of a CSP Blog reader. Also, the Fourier transform is viewed by Machine Learners as an input data representation, and that representation matters.

I first considered whether a machine (neural network) could learn the (64-point, complex-valued)  Fourier transform in this post. I used MATLAB’s Neural Network Toolbox and I failed to get good learning results because I did not properly set the machine’s hyperparameters. A kind reader named Vito Dantona provided a comment to that original post that contained good hyperparameter selections, and I’m going to report the new results here in this post.

Since the Fourier transform is linear, the machine should be set up to do linear processing. It can’t just figure that out for itself. Once I used Vito’s suggested hyperparameters to force the machine to be linear, the results became much better:

Continue reading “‘Can a Machine Learn the Fourier Transform?’ Redux, Plus Relevant Comments on a Machine-Learning Paper by M. Kulin et al.”

Computational Costs for Spectral Correlation Estimators

The costs strongly depend on whether you have prior cycle-frequency information or not.

Let’s look at the computational costs for spectral-correlation analysis using the three main estimators I’ve previously described on the CSP Blog: the frequency-smoothing method (FSM), the time-smoothing method (TSM), and the strip spectral correlation analyzer (SSCA).

We’ll see that the FSM and TSM are the low-cost options when estimating the spectral correlation function for a few cycle frequencies and that the SSCA is the low-cost option when estimating the spectral correlation function for many cycle frequencies. That is, the TSM and FSM are good options for directed analysis using prior information (values of cycle frequencies) and the SSCA is a good option for exhaustive blind analysis, for which there is no prior information available.

Continue reading “Computational Costs for Spectral Correlation Estimators”

Can a Machine Learn the Fourier Transform?

Well, can it? I mean, can it REALLY? Or just approximately?

Update: See Part 2 of this post at this link. If you want to leave on comment, leave it on Part 2. Comments closed on this Part 1 post.

Continue reading “Can a Machine Learn the Fourier Transform?”

CSP Blog Highlights

Welcome to the CSP Blog!

To help new readers, I’m supplying here links to the posts that have gotten the most attention over the lifetime of the Blog. Omitted from this list are the more esoteric topics as well as most of the posts that comment on the engineering literature.

Click the button below to follow the CSP Blog:

Follow Cyclostationary Signal Processing on WordPress.com

Use this button to donate to the CSP Blog:

Support the CSP Blog and Keep it Ad-Free

Please consider donating to the CSP Blog to keep it ad-free and to support the addition of major new features. The small box below is used to specify the number of $5 donations.

$5.00

You can see a pre-publication version of my latest CSP journal paper, on “tunneling”, here.

Here are the highlights:

Continue reading “CSP Blog Highlights”

CSP Estimators: The Strip Spectral Correlation Analyzer

The SSCA is a good tool for blind (no prior information) exhaustive (all cycle frequencies) spectral correlation analysis. An alternative is the FFT accumulation method.

In this post I present a very useful blind cycle-frequency estimator known in the literature as the strip spectral correlation analyzer (SSCA) (The Literature [R3-R5]). We’ve covered the basics of the frequency-smoothing method (FSM) and the time-smoothing method (TSM) of estimating the spectral correlation function (SCF) in previous posts. The TSM and FSM are efficient estimators of the SCF when it is desired to estimate it for one or a few cycle frequencies (CFs). The SSCA, on the other hand, is efficient when we want to estimate the SCF for all CFs.

See also an alternate method of exhaustive SCF estimation: The FFT Accumulation Method.

Continue reading “CSP Estimators: The Strip Spectral Correlation Analyzer”

Second-Order Estimator Verification Guide

Use this post to help check the accuracy of your second-order CSP estimators.

In this post I provide some tools for the do-it-yourself CSP practitioner. One of the goals of this blog is to help new CSP researchers and students to write their own estimators and algorithms. This post contains some spectral correlation function and cyclic autocorrelation function estimates and numerically evaluated formulas that can be compared to those produced by anybody’s code.

The signal of interest is, of course, our rectangular-pulse BPSK signal with symbol rate 0.1 (normalized frequency units) and carrier offset 0.05. You can download a MATLAB script for creating such a signal here.

The formula for the SCF for a textbook BPSK signal is published in several places (The Literature [R47], My Papers [6]) and depends mainly on the Fourier transform of the pulse function used by the textbook signal.

We’ll compare the numerically evaluated spectral correlation formula with estimates produced by my version of the frequency-smoothing method (FSM). The FSM estimates and the theoretical functions are contained in a MATLAB mat file here. (I had to change the extension of the mat file from .mat to .doc to allow posting it to WordPress.) In all the results shown here and that you can download, the processed data-block length is 65536 samples and the FSM smoothing width is 0.02 Hz. A rectangular smoothing window is used. For all cycle frequencies except zero (non-conjugate), a zero-padding factor of two is used in the FSM.

For the cyclic autocorrelation, we provide estimates using two methods: inverse Fourier transformation of the spectral correlation estimate and direct averaging of the second-order lag product in the time domain.

Continue reading “Second-Order Estimator Verification Guide”