SPTK: The Analytic Signal and Complex Envelope

In signal processing, and in CSP, we often have to convert real-valued data into complex-valued data and vice versa. Real-valued data is in the real world, but complex-valued data is easier to process due to the use of a substantially lower sampling rate.

Previous SPTK Post: The Moving-Average Filter    Next SPTK Post: Random Variables

In this Signal-Processing Toolkit post, we review the signal-processing steps needed to convert a real-valued sampled-data bandpass signal to a complex-valued sampled-data lowpass signal. The former can arise from sampling a signal that has been downconverted from its radio-frequency spectral band to a much lower intermediate-frequency spectral band. So we want to convert such data to complex samples at zero frequency (‘complex baseband’) so we can decimate them and thereby match the sample rate to the signal’s baseband bandwidth. Subsequent signal-processing algorithms (including CSP of course) can then operate on the relatively low-rate complex-envelope data, which is beneficial because the same number of seconds of data can be processed using fewer samples.

Continue reading “SPTK: The Analytic Signal and Complex Envelope”

SPTK: The Moving-Average Filter

A simple and useful example of a linear time-invariant system. Good for smoothing and discovering trends by averaging away noise.

Previous SPTK Post: Ideal Filters             Next SPTK Post: The Complex Envelope

We continue our basic signal-processing posts with one on the moving-average, or smoothing, filter. The moving-average filter is a linear time-invariant operation that is widely used to mitigate the effects of additive noise and other random disturbances from a presumably well-behaved signal. For example, a physical phenomenon may be producing a signal that increases monotonically over time, but our measurement of that signal is corrupted by noise, interference, or flaws in measurement. The moving-average filter can reveal the sought-after trend by suppressing the effects of the unwanted disturbances.

Continue reading “SPTK: The Moving-Average Filter”

SPTK: Ideal Filters

Ideal filters have rectangular or unit-step-like transfer functions and so are not physical. But they permit much insight into the analysis and design of real-world linear systems.

Previous SPTK Post: Convolution       Next SPTK Post: The Moving-Average Filter

We continue with our non-CSP signal-processing tool-kit series with this post on ideal filtering. Ideal filters are those filters with transfer functions that are rectangular, step-function-like, or combinations of rectangles and step functions.

Continue reading “SPTK: Ideal Filters”

SPTK: Convolution and the Convolution Theorem

Convolution is an essential element in everyone’s signal-processing toolkit. We’ll look at it in detail in this post.

Previous SPTK Post: Interconnection of Linear Systems      Next SPTK Post: Ideal Filters

This installment of the Signal Processing Toolkit series of CSP Blog posts deals with the ubiquitous signal-processing operation known as convolution. We originally came across it in the context of linear time-invariant systems. In this post, we focus on the mechanics of computing convolutions and discuss their utility in signal processing and CSP.

Continue reading “SPTK: Convolution and the Convolution Theorem”

50,000 Page Views in 2020

And counting …

Last evening the CSP Blog crossed the 50,000 page-view threshold for 2020, a yearly total that has not been achieved previously!

I want to thank each reader, each commenter, and each person that’s clicked the Donate button. You’ve made the CSP Blog the success it is, and I am so grateful for the time you spend here.

On these occasions I put some of the more interesting CSP-Blog statistics below the fold. If you have been wanting to see a post on a particular CSP or Signal Processing ToolKit topic, and it just hasn’t appeared, feel free to leave me a note in the Comments section.

Continue reading “50,000 Page Views in 2020”

All BPSK Signals

An analysis of DeepSig’s 2016.10A data set, used in many published machine-learning papers, and detailed comments on quite a few of those papers.

Update June 2020

I’ll be adding new papers to this post as I find them. At the end of the original post there is a sequence of date-labeled updates that briefly describe the relevant aspects of the newly found papers. Some machine-learning modulation-recognition papers deserve their own post, so check back at the CSP Blog from time-to-time for “Comments On …” posts.

Continue reading “All BPSK Signals”

Professor Jang Again Tortures CSP Mathematics Until it Breaks

In which my life is made a little harder.

We first met Professor Jang in a “Comments on the Literature” type of post from 2016. In that post, I pointed out fundamental mathematical errors contained in a paper the Professor published in the IEEE Communications Letters in 2014 (The Literature [R71]).

I have just noticed a new paper by Professor Jang, published in the journal IEEE Access, which is a peer-reviewed journal, like the Communications Letters. This new paper is titled “Simultaneous Power Harvesting and Cyclostationary Spectrum Sensing in Cognitive Radios” (The Literature [R144]). Many of the same errors are present in this paper. In fact, the beginning of the paper, and the exposition on cyclostationary signal processing is nearly the same as in The Literature [R71].

Let’s take a look.

Continue reading “Professor Jang Again Tortures CSP Mathematics Until it Breaks”

SPTK: Frequency Response of LTI Systems

The frequency response of a filter tells you how it scales each and every input sine-wave or spectral component.

Previous SPTK Post: LTI Systems             Next SPTK Post: Interconnection of LTI Systems

We continue our progression of Signal-Processing ToolKit posts by looking at the frequency-domain behavior of linear time-invariant (LTI) systems. In the previous post, we established that the time-domain output of an LTI system is completely determined by the input and by the response of the system to an impulse input applied at time zero. This response is called the impulse response and is typically denoted by h(t).

Continue reading “SPTK: Frequency Response of LTI Systems”

SPTK: Linear Time-Invariant Systems

LTI systems, or filters, are everywhere in signal processing. They allow us to adjust the amplitudes and phases of spectral components of the input.

Previous SPTK Post: The Fourier Transform         Next SPTK Post: Frequency Response

In this Signal Processing Toolkit post, we’ll take a first look at arguably the most important class of system models: linear time-invariant (LTI) systems.

What do signal processors and engineers mean by system? Most generally, a system is a rule or mapping that associates one or more input signals to one or more output signals. As we did with signals, we discuss here various useful dichotomies that break up the set of all systems into different subsets with important properties–important to mathematical analysis as well as to design and implementation. Then we’ll look at time-domain input/output relationships for linear systems. In a future post we’ll look at the properties of linear systems in the frequency domain.

Continue reading “SPTK: Linear Time-Invariant Systems”

SPTK: The Fourier Transform

An indispensable tool in CSP and all of signal processing!

Previous SPTK Post: The Fourier Series      Next SPTK Post: Linear Systems

This post in the Signal Processing Toolkit series deals with a key mathematical tool in CSP: The Fourier transform. Let’s try to see how the Fourier transform arises from a limiting version of the Fourier series.

Continue reading “SPTK: The Fourier Transform”

SPTK: The Fourier Series

A crucial tool for developing the temporal parameters of CSP.

Previous SPTK Post: Signal Representations            Next SPTK Post: The Fourier Transform

This installment of the Signal Processing Toolkit shows how the Fourier series arises from a consideration of representing arbitrary signals as vectors in a signal space. We also provide several examples of Fourier series calculations, interpret the Fourier series, and discuss its relevance to cyclostationary signal processing.

Continue reading “SPTK: The Fourier Series”

SPTK: Signal Representations

A signal can be written down in many ways. Some of them are more useful than others and can lead to great insights.

Previous SPTK Post: Signals                    Next SPTK Post: Fourier Series

In this Signal Processing ToolKit post, we’ll look at the idea of signal representations. This is a branch of signal-processing mathematics that expresses one signal in terms of one or more signals drawn from a special set, such as the set of all sine waves, the set of harmonically related sine waves, a set of wavelets, a set of piecewise constant waveforms, etc.

Signal representations are a key component of understanding stationary-signal processing tools such as convolution and Fourier series and transforms. Since Fourier series and transforms are an integral part of CSP, signal representations are important for all our discussions at the CSP Blog.

Continue reading “SPTK: Signal Representations”

Signal Processing Toolkit: Signals

Introducing the SPTK on the CSP Blog. Basic signal-processing tools with discussions of their connections to and uses in CSP.

Next SPTK Post: Signal Representations

This is the inaugural post of a new series of posts I’m calling the Signal Processing Toolkit (SPTK).  The SPTK posts will cover relatively simple topics in signal processing that are useful in the practice of cyclostationary signal processing. So, they are not CSP posts, but CSP practitioners need to know this material to be successful in CSP. The CSP Blog is branching out! (But don’t worry, there are more CSP posts coming too.)

Continue reading “Signal Processing Toolkit: Signals”

New Look for a New Year and New Decade

2020 is the fifth full year of existence for the CSP Blog, and the beginning of a new decade that will be full of CSP explorations. I thought I’d freshen up the look of the Blog, so I’ve switched the theme. It is a cleaner look with fewer colors and no more hexagons. I’m not completely happy with it, so I might change it yet again. Let me know if you have problems viewing the content or posting a comment (cmspooner at ieee dot org).

Happy New Year to all my readers!

Symmetries of Second-Order Probabilistic Parameters in CSP

Do we need to consider all cycle frequencies, both positive and negative? Do we need to consider all delays and frequencies in our second-order CSP parameters?

As you progress through the various stages of learning CSP (intimidation, frustration, elucidation, puzzlement, and finally smooth operation), the symmetries of the various functions come up over and over again. Exploiting symmetries can result in lower computational costs, quicker debugging, and easier mathematical development.

What exactly do we mean by ‘symmetries of parameters?’ I’m talking primarily about the evenness or oddness of the time-domain functions in the delay \tau and cycle frequency \alpha variables and of the frequency-domain functions in the spectral frequency f and cycle frequency \alpha variables. Or a generalized version of evenness/oddness, such as f(-x) = g(x), where f(x) and g(x) are closely related functions. We have to consider the non-conjugate and conjugate functions separately, and we’ll also consider both the auto and cross versions of the parameters. We’ll look at higher-order cyclic moments and cumulants in a future post.

You can use this post as a resource for mathematical development because I present the symmetry equations. But also each symmetry result is illustrated using estimated parameters via the frequency smoothing method (FSM) of spectral correlation function estimation. The time-domain parameters are obtained from the inverse transforms of the FSM parameters. So you can also use this post as an extension of the second-order verification guide to ensure that your estimator works for a wide variety of input parameters.

Continue reading “Symmetries of Second-Order Probabilistic Parameters in CSP”

The Ambiguity Function and the Cyclic Autocorrelation Function: Are They the Same Thing?

To-may-to, to-mah-to?

Let’s talk about ambiguity and correlation. The ambiguity function is a core component of radar signal processing practice and theory. The autocorrelation function and the cyclic autocorrelation function, are key elements of generic signal processing and cyclostationary signal processing, respectively. Ambiguity and correlation both apply a quadratic functional to the data or signal of interest, and they both weight that quadratic functional by a complex exponential (sine wave) prior to integration or summation.

Are they the same thing? Well, my answer is both yes and no.

Continue reading “The Ambiguity Function and the Cyclic Autocorrelation Function: Are They the Same Thing?”

CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano

My friend and colleague Antonio Napolitano has just published a new book on cyclostationary signals and cyclostationary signal processing:

Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations, Academic Press/Elsevier, 2020, ISBN: 978-0-08-102708-0. The book is a comprehensive guide to the structure of cyclostationary random processes and signals, and it also provides pointers to the literature on many different applications. The book is mathematical in nature; use it to deepen your understanding of the underlying mathematics that make CSP possible.

You can check out the book on amazon.com using the following link:

Cyclostationary Processes and Time Series

Continue reading “CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano”

On Impulsive Noise, CSP, and Correntropy

And I still don’t understand how a random variable with infinite variance can be a good model for anything physical. So there.

I’ve seen several published and pre-published (arXiv.org) technical papers over the past couple of years on the topic of cyclic correntropy (The Literature [R123-R127]). I first criticized such a paper ([R123]) here, but the substance of that review was about my problems with the presented mathematics, not impulsive noise and its effects on CSP. Since the papers keep coming, apparently, I’m going to put down some thoughts on impulsive noise and some evidence regarding simple means of mitigation in the context of CSP. Preview: I don’t think we need to go to the trouble of investigating cyclic correntropy as a means of salvaging CSP from the evil clutches of impulsive noise.

Continue reading “On Impulsive Noise, CSP, and Correntropy”

For the Beginner at CSP

Here is a list of links to CSP Blog posts that I think are suitable for a beginner: read them in the order given.

How to Obtain Help from the CSP Blog

Introduction to CSP

How to Create a Simple Cyclostationary Signal: Rectangular-Pulse BPSK

The Cyclic Autocorrelation Function

The Spectral Correlation Function

The Cyclic Autocorrelation for BPSK

Continue reading “For the Beginner at CSP”

A Gallery of Cyclic Correlations

For your delectation.

There are some situations in which the spectral correlation function is not the preferred measure of (second-order) cyclostationarity. In these situations, the cyclic autocorrelation (non-conjugate and conjugate versions) may be much simpler to estimate and work with in terms of detector, classifier, and estimator structures. So in this post, I’m going to provide plots of the cyclic autocorrelation for each of the signals in the spectral correlation gallery post. The exceptions are those signals I called feature-rich in the spectral correlation gallery post, such as LTE and radar. Recall that such signals possess a large number of cycle frequencies, and plotting their three-dimensional spectral correlation surface is not helpful as it is difficult to interpret with the human eye. So for the cycle-frequency patterns of feature-rich signals, we’ll rely on the stem-style (cyclic-domain profile) plots that I used in the gallery post.

Continue reading “A Gallery of Cyclic Correlations”