Comments on “Blind Cyclostationary Spectrum Sensing in Cognitive Radios” by W. M. Jang

We are all susceptible to using bad mathematics to get us where we want to go. Here is an example.

I recently came across the 2014 paper in the title of this post. I mentioned it briefly in the post on the periodogram. But I’m going to talk about it a bit more here because this is the kind of thing that makes things harder for people trying to learn about cyclostationarity, which eventually leads to the need for something like the CSP Blog as a corrective.

The idea behind the paper is that it would be nice to avoid the need for prior knowledge of cycle frequencies when using cycle detectors or the like. If you could just compute the entire spectral correlation function, then collapse it by integrating (summing) over frequency f, then you’d have a one-dimensional function of cycle frequency \alpha and you could then process that function inexpensively to perform detection and classification tasks.

Continue reading “Comments on “Blind Cyclostationary Spectrum Sensing in Cognitive Radios” by W. M. Jang”

Comments on “Cyclostationary Correntropy: Definition and Application” by Fontes et al

I recently came across a published paper with the title Cyclostationary Correntropy: Definition and Application, by Aluisio Fontes et al. It is published in a journal called Expert Systems with Applications (Elsevier). Actually, it wasn’t the first time I’d seen this work by these authors. I had reviewed a similar paper in 2015 for a different journal.

I was surprised to see the paper published because I had a lot of criticisms of the original paper, and the other reviewers agreed since the paper was rejected. So I did my job, as did the other reviewers, and we tried to keep a flawed paper from entering the literature, where it would stay forever causing problems for readers.

The editor(s) of the journal Expert Systems with Applications did not ask me to review the paper, so I couldn’t give them the benefit of the work I already put into the manuscript, and apparently the editor(s) did not themselves see sufficient flaws in the paper to merit rejection.

It stings, of course, when you submit a paper that you think is good, and it is rejected. But it also stings when a paper you’ve carefully reviewed, and rejected, is published anyway.

Fortunately I have the CSP Blog, so I’m going on another rant. After all, I already did this the conventional rant-free way.

Continue reading “Comments on “Cyclostationary Correntropy: Definition and Application” by Fontes et al”

100-MHz Amplitude Modulation? Comments on “Sub-Nyquist Cyclostationary Detection for Cognitive Radio” by Cohen and Eldar

I came across a paper by Cohen and Eldar, researchers at the Technion in Israel. You can get the paper on the Arxiv site here. The title is “Sub-Nyquist Cyclostationary Detection for Cognitive Radio,” and the setting is spectrum sensing for cognitive radio. I have a question about the paper that I’ll ask below.

Continue reading “100-MHz Amplitude Modulation? Comments on “Sub-Nyquist Cyclostationary Detection for Cognitive Radio” by Cohen and Eldar”

Radio-Frequency Scene Analysis

Modulation recognition is one thing, holistic radio-frequency scene analysis is quite another.

So why do I obsess over cyclostationary signals and cyclostationary signal processing? What’s the big deal, in the end? In this post I discuss my view of the ultimate use of cyclostationary signal processing (CSP): Radio-Frequency Scene Analysis (RFSA). Eventually, I hope to create a kind of Star Trek Tricorder for RFSA.

Continue reading “Radio-Frequency Scene Analysis”

Second-Order Estimator Verification Guide

Use this post to help check the accuracy of your second-order CSP estimators.

Update September 2022: New section on the non-conjugate and conjugate coherence function.

***

In this post I provide some tools for the do-it-yourself CSP practitioner. One of the goals of this blog is to help new CSP researchers and students to write their own estimators and algorithms. This post contains some spectral correlation function and cyclic autocorrelation function estimates and numerically evaluated formulas that can be compared to those produced by anybody’s code.

The signal of interest is, of course, our rectangular-pulse BPSK signal with symbol rate 0.1 (normalized frequency units) and carrier offset 0.05. You can download a MATLAB script for creating such a signal here.

The formula for the SCF for a textbook BPSK signal is published in several places (The Literature [R47], My Papers [6]) and depends mainly on the Fourier transform of the pulse function used by the textbook signal.

We’ll compare the numerically evaluated spectral correlation formula with estimates produced by my version of the frequency-smoothing method (FSM). The FSM estimates and the theoretical functions are contained in a MATLAB mat file here. (I had to change the extension of the mat file from .mat to .doc to allow posting it to WordPress–change it back after downloading. It is a zipped .mat file as of 12/2/22.) In all the results shown here and that you can download, the processed data-block length is 65536 samples and the FSM smoothing width is 0.02 Hz. A rectangular smoothing window is used. For all cycle frequencies except zero (non-conjugate), a zero-padding factor of two is used in the FSM.

For the cyclic autocorrelation, we provide estimates using two methods: inverse Fourier transformation of the spectral correlation estimate and direct averaging of the second-order lag product in the time domain.

Continue reading “Second-Order Estimator Verification Guide”

Textbook Signals

Yes, the CSP Blog uses the simplest idealized cyclostationary digital signal–rectangular-pulse BPSK–to connect all the different aspects of CSP. But don’t mistake these ‘textbook’ signals for the real world.

What good is having a blog if you can’t offer a rant every once in a while? In this post I talk about what I call textbook signals, which are mathematical models of communication signals that are used by many researchers in statistical signal processing for communications.

We’ve already encountered, and used frequently, the most common textbook signal of all: rectangular-pulse BPSK with independent and identically distributed (IID) bits. We’ve been using this signal to illustrate the cyclostationary signal processing concepts and estimators as they have been introduced. It’s a good choice from the point of view of consistency of all the posts and it is easy to generate and to understand. However, it is not a good choice from the perspective of realism. It is rare to encounter a textbook BPSK signal in the practice of signal processing for communications.

I use the term textbook because the textbook signals can be found in standard textbooks, such as Proakis (The Literature [R44]). Textbook signals stand in opposition to signals used in the world, such as OFDM in LTE, slotted GMSK in GSM, 8PAM VSB with synchronization bits in ATSC-DTV, etc.

Typical communication signals combine a textbook signal with an access mechanism to yield the final physical-layer signal–the signal that is actually transmitted (My Papers [11], [16]). What is important for us, here at the CSP Blog, is that this combination usually results in a signal with radically different cyclostationarity than the textbook component. So it is not enough to understand textbook signals’ cyclostationarity. We must also understand the cyclostationarity of the real-world signal, which may be sufficiently complex to render mathematical modeling and analysis impossible (at least for me). (See also some relevant examples of real-world signals here and here.)

Continue reading “Textbook Signals”