Let’s look into the statistical properties of a class of textbook signals that encompasses digital quadrature amplitude modulation (QAM), phase-shift keying (PSK), and pulse-amplitude modulation (PAM). I’ll call the class simply digital QAM (DQAM), and all of its members have an analytical-signal mathematical representation of the form
In this model, is the symbol index,
is the symbol rate,
is the carrier frequency (sometimes called the carrier frequency offset),
is the symbol-clock phase, and
is the carrier phase. The finite-energy function
is the pulse function (sometimes called the pulse-shaping function). Finally, the random variable
is called the symbol, and has a discrete distribution that is called the constellation.
Model (1) is a textbook signal when the sequence of symbols is independent and identically distributed (IID). This condition rules out real-world communication aids such as periodically transmitted bursts of known symbols, adaptive modulation (where the constellation may change in response to the vagaries of the propagation channel), some forms of coding, etc. Also, when the pulse function is a rectangle (with width
), the signal is even less realistic, and therefore more textbooky.
We will look at the moments and cumulants of this general model in this post. Although the model is textbook, we could use it as a building block to form more realistic, less textbooky, signal models. Then we could find the cyclostationarity of those models by applying signal-processing transformation rules that define how the cumulants of the output of a signal processor relate to those for the input.