Introducing Dr. John A. Snoap

An expert signal processor. An expert machine learner. All in one person!

I am very pleased to announce that my signal-processing, machine-learning, and modulation-recognition collaborator and friend John Snoap has successfully defended his doctoral dissertation and is now Dr. Snoap!

I started working with John after we met in the Comments section of the CSP Blog way back in 2019. John was building his own set of CSP software tools and ran into a small bump in the road and asked for some advice. Just the kind of reader I hope for–independent-minded, gets to the bottom of things, and embraces signal processing.

As we interacted over email and zoom it became clear that John was thinking of making a contribution in the area of modulation recognition, and was also interested in learning more about machine learning using neural networks. Since I had been recently engaged in hand-to-hand combat with machine learners who were, in my opinion of course, injecting more confusion than elucidation into the field, I figured this might be a friendly way for me to understand machine learning better, and maybe there would be a way or two to marry signal processing with supervised learning. So off we went.

Fast forward four years and we’ve published five papers, with a sixth in review, that I believe are trailblazing. John is that rare person that has mastered two very different technical areas: cyclostationary signal processing and deep learning. Because I believe that neural networks do not actually learn the things that we hope they will, but need not-so-gentle nudges toward learning the truly valuable things, a researcher with one foot firmly in the signal-processing world and the other firmly in the machine-learning world has a very bright future indeed.

The title of John’s dissertation is Deep-Learning-Based Classification of Digitally Modulated Signals, which he wrote as a student in the Department of Electrical and Computer Engineering at Old Dominion University under the direction of his advisor Professor Dimitrie Popescu.

Congratulations Dr. Snoap! And thank you for everything.

The Signal-Processing Equivalent of Resume-Padding? Comments on “A Robust Modulation Classification Method Using Convolutional Neural Networks” by S. Zhou et al.

Does the use of ‘total SNR’ mislead when the fractional bandwidth is very small? What constitutes ‘weak-signal processing?’

Or maybe “Comments on” here should be “Questions on.”

In a recent paper in EURASIP Journal on Advances in Signal Processing (The Literature [R165]), the authors tackle the problem of machine-learning-based modulation recognition for highly oversampled rectangular-pulse digital signals. They don’t use the DeepSig datasets (one, two, three, four), but their dataset description and use of ‘signal-to-noise ratio’ leaves a lot to be desired. Let’s take a brief look. See if you agree with me that the touting of their results as evidence that they can reliably classify signals with ‘SNRs of -10 dB’ is unwarranted and misleading.

Continue reading “The Signal-Processing Equivalent of Resume-Padding? Comments on “A Robust Modulation Classification Method Using Convolutional Neural Networks” by S. Zhou et al.”

DeepSig’s 2018 Dataset: 2018.01.OSC.0001_1024x2M.h5.tar.gz

The third DeepSig dataset I’ve examined. It’s better!

Update February 2021. I added material relating to the DeepSig-claimed variation of the roll-off parameter in a square-root raised-cosine pulse-shaping function. It does not appear that the roll-off was actually varied as stated in Table I of [R137].

DeepSig’s datasets are popular in the machine-learning modulation-recognition community, and in that community there are many claims that the deep neural networks are vastly outperforming any expertly hand-crafted tired old conventional method you care to name (none are usually named though). So I’ve been looking under the hood at these datasets to see what the machine learners think of as high-quality inputs that lead to disruptive upending of the sclerotic mod-rec establishment. In previous posts, I’ve looked at two of the most popular DeepSig datasets from 2016 (here and here). In this post, we’ll look at one more and I will then try to get back to the CSP posts.

Let’s take a look at one more DeepSig dataset: 2018.01.OSC.0001_1024x2M.h5.tar.gz.

Continue reading “DeepSig’s 2018 Dataset: 2018.01.OSC.0001_1024x2M.h5.tar.gz”

Simple Synchronization Using CSP

Using CSP to find the exact values of symbol rate, carrier frequency offset, symbol-clock phase, and carrier phase for PSK/QAM signals.

In this post I discuss the use of cyclostationary signal processing applied to communication-signal synchronization problems. First, just what are synchronization problems? Synchronize and synchronization have multiple meanings, but the meaning of synchronize that is relevant here is something like:

syn·chro·nize: To cause to occur or operate with exact coincidence in time or rate

If we have an analog amplitude-modulated (AM) signal (such as voice AM used in the AM broadcast bands) at a receiver we want to remove the effects of the carrier sine wave, resulting in an output that is only the original voice or music message. If we have a digital signal such as binary phase-shift keying (BPSK), we want to remove the effects of the carrier but also sample the message signal at the correct instants to optimally recover the transmitted bit sequence. 

Continue reading “Simple Synchronization Using CSP”

Cyclostationarity of Digital QAM and PSK

PSK and QAM signals form the building blocks for a large number of practical real-world signals. Understanding their probability structure is crucial to understanding those more complicated signals.

Let’s look into the statistical properties of a class of textbook signals that encompasses digital quadrature amplitude modulation (QAM), phase-shift keying (PSK), and pulse-amplitude modulation (PAM). I’ll call the class simply digital QAM (DQAM), and all of its members have an analytical-signal mathematical representation of the form

\displaystyle s(t) = \sum_{k=-\infty}^\infty a_k p(t - kT_0 - t_0) e^{i2\pi f_0 t + i \phi_0}. \hfill  (1)

In this model, k is the symbol index, 1/T_0 = f_{sym} is the symbol rate, f_0 is the carrier frequency (sometimes called the carrier frequency offset), t_0 is the symbol-clock phase, and \phi_0 is the carrier phase. The finite-energy function p(t) is the pulse function (sometimes called the pulse-shaping function). Finally, the random variable a_k is called the symbol, and has a discrete distribution that is called the constellation.

Model (1) is a textbook signal when the sequence of symbols is independent and identically distributed (IID). This condition rules out real-world communication aids such as periodically transmitted bursts of known symbols, adaptive modulation (where the constellation may change in response to the vagaries of the propagation channel), some forms of coding, etc. Also, when the pulse function p(t) is a rectangle (with width T_0), the signal is even less realistic, and therefore more textbooky.

We will look at the moments and cumulants of this general model in this post. Although the model is textbook, we could use it as a building block to form more realistic, less textbooky, signal models. Then we could find the cyclostationarity of those models by applying signal-processing transformation rules that define how the cumulants of the output of a signal processor relate to those for the input.

Continue reading “Cyclostationarity of Digital QAM and PSK”