All BPSK Signals

An analysis of DeepSig’s 2016.10A dataset, used in many published machine-learning papers, and detailed comments on quite a few of those papers.

Update March 2021

See my analyses of three other DeepSig datasets here, here, and here.

Update June 2020

I’ll be adding new papers to this post as I find them. At the end of the original post there is a sequence of date-labeled updates that briefly describe the relevant aspects of the newly found papers. Some machine-learning modulation-recognition papers deserve their own post, so check back at the CSP Blog from time-to-time for “Comments On …” posts.

Continue reading “All BPSK Signals”

SPTK: Frequency Response of LTI Systems

The frequency response of a filter tells you how it scales each and every input sine-wave or spectral component.

Previous SPTK Post: LTI Systems             Next SPTK Post: Interconnection of LTI Systems

We continue our progression of Signal-Processing ToolKit posts by looking at the frequency-domain behavior of linear time-invariant (LTI) systems. In the previous post, we established that the time-domain output of an LTI system is completely determined by the input and by the response of the system to an impulse input applied at time zero. This response is called the impulse response and is typically denoted by h(t).

Continue reading “SPTK: Frequency Response of LTI Systems”

SPTK: Linear Time-Invariant Systems

LTI systems, or filters, are everywhere in signal processing. They allow us to adjust the amplitudes and phases of spectral components of the input.

Previous SPTK Post: The Fourier Transform         Next SPTK Post: Frequency Response

In this Signal Processing Toolkit post, we’ll take a first look at arguably the most important class of system models: linear time-invariant (LTI) systems.

What do signal processors and engineers mean by system? Most generally, a system is a rule or mapping that associates one or more input signals to one or more output signals. As we did with signals, we discuss here various useful dichotomies that break up the set of all systems into different subsets with important properties–important to mathematical analysis as well as to design and implementation. Then we’ll look at time-domain input/output relationships for linear systems. In a future post we’ll look at the properties of linear systems in the frequency domain.

Continue reading “SPTK: Linear Time-Invariant Systems”

SPTK: The Fourier Transform

An indispensable tool in CSP and all of signal processing!

Previous SPTK Post: The Fourier Series      Next SPTK Post: Linear Systems

This post in the Signal Processing Toolkit series deals with a key mathematical tool in CSP: The Fourier transform. Let’s try to see how the Fourier transform arises from a limiting version of the Fourier series.

Continue reading “SPTK: The Fourier Transform”

SPTK: The Fourier Series

A crucial tool for developing the temporal parameters of CSP.

Previous SPTK Post: Signal Representations            Next SPTK Post: The Fourier Transform

This installment of the Signal Processing Toolkit shows how the Fourier series arises from a consideration of representing arbitrary signals as vectors in a signal space. We also provide several examples of Fourier-series calculations, interpret the Fourier series, and discuss its relevance to cyclostationary signal processing.

Continue reading “SPTK: The Fourier Series”

SPTK: Signal Representations

A signal can be written down in many ways. Some of them are more useful than others and can lead to great insights.

Previous SPTK Post: Signals                    Next SPTK Post: Fourier Series

In this Signal Processing ToolKit post, we’ll look at the idea of signal representations. This is a branch of signal-processing mathematics that expresses one signal in terms of one or more signals drawn from a special set, such as the set of all sine waves, the set of harmonically related sine waves, a set of wavelets, a set of piecewise constant waveforms, etc.

Signal representations are a key component of understanding stationary-signal processing tools such as convolution and Fourier series and transforms. Since Fourier series and transforms are an integral part of CSP, signal representations are important for all our discussions at the CSP Blog.

Continue reading “SPTK: Signal Representations”

Signal Processing Toolkit: Signals

Introducing the SPTK on the CSP Blog. Basic signal-processing tools with discussions of their connections to and uses in CSP.

Next SPTK Post: Signal Representations

This is the inaugural post of a new series of posts I’m calling the Signal Processing Toolkit (SPTK).  The SPTK posts will cover relatively simple topics in signal processing that are useful in the practice of cyclostationary signal processing. So, they are not CSP posts, but CSP practitioners need to know this material to be successful in CSP. The CSP Blog is branching out! (But don’t worry, there are more CSP posts coming too.)

Continue reading “Signal Processing Toolkit: Signals”

The Ambiguity Function and the Cyclic Autocorrelation Function: Are They the Same Thing?

To-may-to, to-mah-to?

Let’s talk about ambiguity and correlation. The ambiguity function is a core component of radar signal processing practice and theory. The autocorrelation function and the cyclic autocorrelation function, are key elements of generic signal processing and cyclostationary signal processing, respectively. Ambiguity and correlation both apply a quadratic functional to the data or signal of interest, and they both weight that quadratic functional by a complex exponential (sine wave) prior to integration or summation.

Are they the same thing? Well, my answer is both yes and no.

Continue reading “The Ambiguity Function and the Cyclic Autocorrelation Function: Are They the Same Thing?”

CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano

My friend and colleague Antonio Napolitano has just published a new book on cyclostationary signals and cyclostationary signal processing:

Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations, Academic Press/Elsevier, 2020, ISBN: 978-0-08-102708-0. The book is a comprehensive guide to the structure of cyclostationary random processes and signals, and it also provides pointers to the literature on many different applications. The book is mathematical in nature; use it to deepen your understanding of the underlying mathematics that make CSP possible.

You can check out the book on amazon.com using the following link:

Cyclostationary Processes and Time Series

Continue reading “CSP Resources: The Ultimate Guides to Cyclostationary Random Processes by Professor Napolitano”

On Impulsive Noise, CSP, and Correntropy

And I still don’t understand how a random variable with infinite variance can be a good model for anything physical. So there.

I’ve seen several published and pre-published (arXiv.org) technical papers over the past couple of years on the topic of cyclic correntropy (The Literature [R123-R127]). I first criticized such a paper ([R123]) here, but the substance of that review was about my problems with the presented mathematics, not impulsive noise and its effects on CSP. Since the papers keep coming, apparently, I’m going to put down some thoughts on impulsive noise and some evidence regarding simple means of mitigation in the context of CSP. Preview: I don’t think we need to go to the trouble of investigating cyclic correntropy as a means of salvaging CSP from the evil clutches of impulsive noise.

Continue reading “On Impulsive Noise, CSP, and Correntropy”

For the Beginner at CSP

Here is a list of links to CSP Blog posts that I think are suitable for a beginner: read them in the order given.

How to Obtain Help from the CSP Blog

Introduction to CSP

How to Create a Simple Cyclostationary Signal: Rectangular-Pulse BPSK

The Cyclic Autocorrelation Function

The Spectral Correlation Function

The Cyclic Autocorrelation for BPSK

Continue reading “For the Beginner at CSP”

A Gallery of Cyclic Correlations

For your delectation.

There are some situations in which the spectral correlation function is not the preferred measure of (second-order) cyclostationarity. In these situations, the cyclic autocorrelation (non-conjugate and conjugate versions) may be much simpler to estimate and work with in terms of detector, classifier, and estimator structures. So in this post, I’m going to provide surface plots of the cyclic autocorrelation for each of the signals in the spectral correlation gallery post. The exceptions are those signals I called feature-rich in the spectral correlation gallery post, such as DSSS, LTE, and radar. Recall that such signals possess a large number of cycle frequencies, and plotting their three-dimensional spectral correlation surface is not helpful as it is difficult to interpret with the human eye. So for the cycle-frequency patterns of feature-rich signals, we’ll rely on the stem-style (cyclic-domain profile) plots that I used in the spectral correlation gallery post.

Continue reading “A Gallery of Cyclic Correlations”

On The Shoulders

What modest academic success I’ve had in the area of cyclostationary signal theory and cyclostationary signal processing is largely due to the patient mentorship of my doctoral adviser, William (Bill) Gardner, and the fact that I was able to build on an excellent foundation put in place by Gardner, his advisor Lewis Franks, and key Gardner students such as William (Bill) Brown.

Continue reading “On The Shoulders”

Dataset for the Machine-Learning Challenge [CSPB.ML.2018]

A PSK/QAM/SQPSK data set with randomized symbol rate, inband SNR, carrier-frequency offset, and pulse roll-off.

Update April 2025: All but the first five batch files have been removed. I needed to make space since WordPress has a hard limit on storage. Use CSPB.ML.2018R2 in any case.

Update September 2023: A randomization flaw has been found and fixed for CSPB.ML.2018, resulting in CSPB.ML.2018R2. Use that one going forward.

Update February 2023: I’ve posted a third challenge dataset here. It is CSPB.ML.2023 and features cochannel signals.

Update April 2022. I’ve also posted a second dataset here. This new dataset is similar to the original ML Challenge dataset except the random variable representing the carrier frequency offset has a slightly different distribution.

If you refer to either of the posted datasets in a published paper, please use the following designators, which I am also using in papers I’m attempting to publish:

Original ML Challenge Dataset: CSPB.ML.2018.

Shifted ML Challenge Dataset: CSPB.ML.2022.

Update September 2020. I made a mistake when I created the signal-parameter “truth” files signal_record.txt and signal_record_first_20000.txt. Like the DeepSig RML datasets that I analyzed on the CSP Blog here and here, the SNR parameter in the truth files did not match the actual SNR of the signals in the data files. I’ve updated the truth files and the links below. You can still use the original files for all other signal parameters, but the SNR parameter was in error.

Update July 2020. I originally posted 20,000 signals in the posted dataset. I’ve now added another 92,000 for a total of 112,000 signals. The original signals are contained in Batches 1-5, the additional signals in Batches 6-28. I’ve placed these additional Batches at the end of the post to preserve the original post’s content.

Continue reading “Dataset for the Machine-Learning Challenge [CSPB.ML.2018]”

MATLAB’s SSCA: commP25ssca.m

In this short post, I describe some errors that are produced by MATLAB’s strip spectral correlation analyzer function commP25ssca.m. I don’t recommend that you use it; far better to create your own function.

Continue reading “MATLAB’s SSCA: commP25ssca.m”

Useful Signal Processing Blogs or Websites?

Update November 1, 2018: A site called feedspot (blog.feedspot.com) contacted me to tell me I made their “Top 10 Digital Signal Processing Blogs, Websites & Newsletters in 2018” list. Weirdly, there are only eight blogs in the list. What’s most important for this post is the other signal processing blogs on the list. So check it out if you are looking for other sources of online signal processing information. Enjoy!  blog.feedspot.com/digital_signal_processing_blogs

***             ***             ***

Some of my CSP posts get a lot of comments asking for help, and that’s a good thing. I continue to try to help readers to help themselves. Throughout my posts, I link terms and methods to webpages that provide tutorial or advanced information, and most of the time that means wikipedia.

But I’d like to be able to refer readers to good websites that discuss related aspects of signal processing and communication signals, such as filtering, spectrum estimation, mathematical models, Fourier analysis, etc. I’ve had little success with the Google searches I’ve tried.

Continue reading “Useful Signal Processing Blogs or Websites?”

Comments on “Detection of Almost-Cyclostationarity: An Approach Based on a Multiple Hypothesis Test” by S. Horstmann et al

The statistics-oriented wing of electrical engineering is perpetually dazzled by [insert Revered Person]’s Theorem at the expense of, well, actual engineering.

I recently came across the conference paper in the post title (The Literature [R101]). Let’s take a look.

The paper is concerned with “detect[ing] the presence of ACS signals with unknown cycle period.” In other words, blind cyclostationary-signal detection and cycle-frequency estimation. Of particular importance to the authors is the case in which the “period of cyclostationarity” is not equal to an integer number of samples. They seem to think this is a new and difficult problem. By my lights, it isn’t. But maybe I’m missing something. Let me know in the Comments.

Continue reading “Comments on “Detection of Almost-Cyclostationarity: An Approach Based on a Multiple Hypothesis Test” by S. Horstmann et al”

More on Pure and Impure Sine Waves

Gaussian and binary signals are in some sense at opposite ends of the pure-impure sine-wave spectrum.

Remember when we derived the cumulant as the solution to the pure nth-order sine-wave problem? It sounded good at the time, I hope. But here I describe a curious special case where the interpretation of the cumulant as the pure component of a nonlinearly generated sine wave seems to break down.

Continue reading “More on Pure and Impure Sine Waves”

Cyclostationarity of Direct-Sequence Spread-Spectrum Signals

Spread-spectrum signals are used to enable shared-bandwidth communication systems (CDMA), precision position estimation (GPS), and secure wireless data transmission.

In this post we look at direct-sequence spread-spectrum (DSSS) signals, which can be usefully modeled as a kind of PSK signal. DSSS signals are used in a variety of real-world situations, including the familiar CDMA and WCDMA signals, covert signaling, and GPS. My colleague Antonio Napolitano has done some work on a large class of DSSS signals (The Literature [R11, R17, R95]), resulting in formulas for their spectral correlation functions, and I’ve made some remarks about their cyclostationary properties myself here and there (My Papers [16]).

A good thing, from the point of view of modulation recognition, about DSSS signals is that they are easily distinguished from other PSK and QAM signals by their spectral correlation functions. Whereas most PSK/QAM signals have only a single non-conjugate cycle frequency, and no conjugate cycle frequencies, DSSS signals have many non-conjugate cycle frequencies and in some cases also have many conjugate cycle frequencies.

Continue reading “Cyclostationarity of Direct-Sequence Spread-Spectrum Signals”

Machine Learning and Modulation Recognition: Comments on “Convolutional Radio Modulation Recognition Networks” by T. O’Shea, J. Corgan, and T. Clancy

Update October 2020:

Since I wrote the paper review in this post, I’ve analyzed three of O’Shea’s data sets (O’Shea is with the company DeepSig, so I’ve been referring to the data sets as DeepSig’s in other posts): All BPSK Signals, More on DeepSig’s Data Sets, and DeepSig’s 2018 Data Set. The data set relating to this paper is analyzed in All BPSK Signals. Preview: It is heavily flawed.

Continue reading “Machine Learning and Modulation Recognition: Comments on “Convolutional Radio Modulation Recognition Networks” by T. O’Shea, J. Corgan, and T. Clancy”